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Preface

This document contains exercises to be used in conjunction with the text Principles of planetary
climate.. A subset of the problems have been included in the print version of the book, in the
Workbook sections for each chapter. This file is being maintained separately to provide room for
additional problems that did not fit in the print version. The instructor can also make use of the
LaTeX source file to copy and paste problems into individual problem sets. The LaTeX problem
label tags provide unique problem identifiers, which make it easy to identify the corresponding
solution write-ups.
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4 CHAPTER 1. BIG QUESTIONS

1.1 Workbook

1.1.1 Your Computational Toolkit

The following problems introduce the computer and numerical analysis skills needed to do the
problems in the Workbook sections of each chapter. There are a few specialized techniques which
will be introduced in later chapters, but these basic skills will see the student a very long way
indeed, if thoroughly mastered.

The numerical algorithms are introduced below by name, but no attempt has been made to
describe or motivate the algorithm here. For that, the student should consult the book Numerical
Recipes. Should you write your own routines, or use ready-made routines from a library of some
sort? Ideally, one should do a bit of both – writing a basic implementation to see what is going
on, and then eventually going over to a full-featured professionally written implementation for
heavy-duty work. If time is short, it is reasonable to cut corners by going directly to the packaged
routines, so long as one has some idea about what is going on inside the black box. In any event,
the intent is that after completion of the problems in this section, the reader will be able to carry
out all the necessary numerical operations.

Data referred to here and elsewhere in the Workbook sections of this book is provided as
part of the online supplement. it is presumed that the instructor has downloaded the data and put
it in a place that is available to everybody who needs it. The reader who is doing the problems on
his or her own can simply download the data and put it wherever convenient.

Python tips: First, of course, you should learn some basic Python programming. This
can be done through the tutorial material provided as part of the online supplement, or through
information found at the web site python.org. The Python implementations are for the most
part done in an object-oriented fashion. This may sound fancy and high-tech, but it’s really quite
simple. A kind of object is defined by a class, which allows one to create objects that perform
some kind of task. This could be integration of a differential equation, evaluation of a definite
integral or just about anything. If one provides the needed specifications, an object can be called
like a function, indexed like an array, or even have arithmetic operations defined on it; an object can
store data as well as means to manipulate the data. Objects make it easy to substitute alternate
algorithms that perform the same function, without having to do major surgery on the rest of
the program. Object-oriented programming is a very versatile technique, which is implemented
in all modern programming languages, including even MATLAB and FORTRAN 90. Python provides
far and away the gentlest introduction to object oriented programming, however. This style of
programming has not yet pervaded scientific simulation, but the reader would do well to gain some
facility with it, regardless of which programming language is the language of choice.

For the Python user, the basic courseware tools are implemented in the module ClimateUtilities.py.
This module contains utilities for data input and output, graphics, and numerical analysis. Since
the objects and functions defined in this module are so extensively used in solving the Workbook
problems, you should normally import it into the Python interpreter using

from ClimateUtilities import *

Pay particularly close attention to the Curve class defined in ClimateUtilities. It allows you
to create Curve objects that make it easy to do input and output of tabular data without dealing
with low-level details, and also facilitates graphics and data manipulation. As with all Python
objects, you can find out what features the Curve class has by typing dir(Curve), and you can
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access built-in documentation by typing help(Curve).

The other main courseware modules are phys.py, and planets.py. phys.py provides uni-
versal physical constants, thermodynamic properties and frequently-used functions for computing
various physical quantities. planets.py contains data on selected astronomical bodies. The use
of these two modules will be introduced in the workbook sections of later chapters.

The online supplement provides Python example scripts showing how to use the tools in
ClimateUtilities to solve problems of the type introduced below. It also provides a number of
numerical analysis tutorials which introduce the basic ideas behind the key algorithms. These can
be used to supplement the deeper discussion provided in Numerical Recipes.

Problem 1.1.1 Plotting a function

Make a graph of Eq. ?? showing the evolution of Solar luminosity over time. As the vertical
axis, you may use the luminosity relative to its present value. Show values out to twice the current
age of the Sun. On the same plot show a straight-line approximation to the function, which yields
the same values as Eq. ?? at t = 0 and t = t�.

There are two different ways to go about making the plot. One alternative is to generate
the data to be plotted in the same software package you use for plotting, and then carry out the
operations (commands, menu choices, etc.) needed to carry out the plot. The second alternative
is to generate the data in one programming environment, write it out to a text file, and then read
the file into the plotting function of your choice. This can be handy if you want to use commercial
plotting software that produces professional-looking figures.

Python Tips: Using the courseware in Python, you do this by making a list of arguments to
the function, making a list of corresponding function values, installing each list in a Curve object,
and then plotting. If the curve object is MyCurve, you plot using plot(MyCurve). Check the examples
in the supplementary material to see how to set plot options such as axis labels, titles, etc. As an
alternative to plotting within Python, you can use the dump method of the Curve object to write
out the data to a text file, which you can then read into the plotting software of your choice. For
example, MyCurve.dump(’out.txt’) writes the data in MyCurve to a text file called out.txt.

Problem 1.1.2 Reading and writing tabular data

Tabular data is a very common form of scientific dataset. A tabular dataset consists of a
number of columns of identical length. Each column represents a quantity of interest, and each
row represents a set of the quantities pertaining to a given ”sample.” The ”sample” could represent
some individual chunk of rock, but more commonly, it will represent some point in space or time.
For example, we could have a three column data set in which the first column is time, the second
is air temperature and the third is the moisture content of the air. Or, the first column could be
height above the surface of a planet while the second column is air pressure and the third is air
density.

When the amount of data involved is not huge, it is convenient to store tabular data in the
form of plain human-readable text files. Since these files can be examined in any text editor, it is
easy to determine their structure and how to read the data into just about any software. There are
still a few variations on the theme that one must keep in mind. First, there must always be some
scheme to separate one column from another. This is usually done using a delimiter character,
which is often a tab character, but could also be an arbitrary number of blank spaces or a comma.
Second, columns may have text labels at the top, giving the name of the variable. Third, there may
be header information before the data, which gives information about the dataset; less commonly,
there can also be documentation at the end of the data. Finally, there may be missing data, and
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there are various ways to indicate missing data. Often it’s done with a numeric code which is easily
recognizable as being not real data. Sometimes, though, missing data is indicated by a character
or group of characters (e.g. ”MISSING”, or ”NA”). That can make problems with software that is
expecting a number and tries to treat the entry as a number. All these things must be taken into
account when reading in tabular data. The datasets to be analyzed in the Workbook sections of
this book will all use numeric codes to indicate missing data, but one can always use a text editor
to globally replace a text code with a numeric code.

This problem will be built around a tabular dataset of data from the Vostok ice core. The
data set consists of four columns: the depth in the core, an estimate of the age of the ice, the
deuterium composition of the ice relative to a standard (which is a measure of temperature at the
time the ice was deposited), and a deuterium-based estimate of the past Antarctic temperature
relative to the present. This file, and all the other ones you will need for this problem, are in
the Chapter1Data/iceCores subdirectory of the Workbook datasets directory. First, open the file
in a text editor and take a look at it to see what’s there. Most text editors will not show the
differences between tabs and spaces by default, though the better ones will have an option to make
this difference visible. Read the header information, to get an idea of what the dataset means and
where it came from.

Let’s now try reading in some data from the Vostok ice core. The full file, which con-
tains detailed documentation in a header plus column labels, with tab-delimited data following,
is in the file you just looked at in the text editor. Lets start more simply, though. The file
vostokT.DataOnlyTabDelim.txt contains only the data, with no header information whatever, in
tab-delimited form. Read it in and take a look at some values. The description of the columns is
given at the top of the file you looked at previously in your text editor. Next try reading in the
data in space-delimited form, from file vostokT.DataOnlySpaceDelim.txt, to get an idea of how to
handle that kind of data in your software. Then, try loading in tab-delimited data with column
labels, from vostokT.ColHeadTab.txt. Finally, see if you can load in the data and column header
part of the full file, vostokT.txt. Documentation is often provided at the top of tabular data, so
if your software doesn’t provide a procedure for skipping the header and extracting the data, you
may need to use a text editor to do this by hand before loading data into your software for further
analysis.

Once you have read in the data, make a graph of the temperature vs. ice age. Also, make
a graph of the age vs. depth.

In addition to being able to read tabular data, you should be able to write tabular data to
a file for later use. To practice this skill, take any of the Vostok ice core datasets you read in,
and write a new text file which contains only the ice-age and temperature anomaly columns (the
second and fourth columns of the original dataset). Read it back in and compare to the original
data to make sure everything has worked properly.

Python tips: Data in a Curve object can be written to a text file using the dump method.
In the courseware, the function readTable takes a filename as its argument, reads the data in the
text file, and returns a Curve object containing all the data. This object can then be used for
plotting, or for further data processing. The data must be in tabular form, with columns delimited
by some consistent character (usually a tab). readTable is usually smart enough to strip off header
information and spot where the data begins and identify column headings. The data set you read
in typically has more information in it than you will want to plot on a single graph. To plot
just selected columns, use the extract method of your Curve object. e.g. if c is your Curve, then
c.extract([’t’,’Z’]) will return a new Curve containing only the columns labeled t and Z.
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Problem 1.1.3 Arithmetic on columns

One of the most basic forms of computation is the performance of arithmetic on rows or
columns of tabular data. This kind of operation is very familiar from spreadsheets and commercial
graphing software. All modern computer languages allow the performance of such operations on
arrays or vectors without the need to write a loop dealing with each entry separately. An array or
vector can be thought of as a row or column of data.

To exercise this skill, make up a column of data corresponding to pressure levels in an
atmosphere. The pressure will be measured in millibars (mb), but the units are immaterial for this
problem. The top of the atmosphere should start at 10 mb, and the data should extend to 1000
mb, which is a typical surface pressure. Next compute a column giving temperature on the dry

adiabat, which you will learn about in Chapter ??. The dry adiabat for Earth air is defined by the
formula T (p) = Tg · (p/ps)

2/7, where Tg is the ground temperature and ps is the surface pressure.
Use Tg = 300K. Use the data in this column to make a third column which gives the corresponding
temperature in degrees Fahrenheit (just hold your nose and pretend you are making a plot to be
used in a television weather show).

To do a somewhat more interesting application of these skills, first read in the instrumental
surface temperature record in the file GISSTemp.txt, located in the GlobalWarming subdirectory of
the Workbook datasets directory for this chapter. These are estimates of global mean temperature.
The first column gives the year, and the remaining columns give the temperature for each month,
and for selected annual and seasonal averages. The temperatures are given as deviations from a
baseline temperature, measured in hundredths of a degree C. Divide the annual average column
(labeled ”J-D”) by 100 and add 14 C, to convert to actual temperature. Plot this curve and take
a look at it to make sure it is reasonable (apart from the fact that it is going up at an alarming
rate).

Now take the difference of the June-August column (”JJA”) and the December-February
column (”DJF”). These correspond to Northern Hemisphere summer, but remember that these
are global means, so that Northern Summer is being averaged with Southern Winter. Global mean
JJA still tends to be warmer than global mean DJF, because the seasonal cycle is strongest in
the Northern hemisphere. However, note that the columns give the deviation of the temperature
from the baseline average for these months, so the difference you computed gives the change in the
strength of the global mean seasonal cycle, not it’s absolute magnitude. Divide your result by 100
to convert the deviation to degrees. Do you notice any interannual variability in the strength of
the seasonal cycle? What is the typical time scale? Do you notice an trend?

Python tips: The Curve object supports arithmetic on columns. Specifically, if ’x’ is a data
column in the curve object c, then c[’x’] returns an array on which arithmetic can be done just as
if it were a regular number. For example, 2*c[’x’] is an array in which the entries are all doubled,
c[’x’]**4 returns an array consisting of the fourth powers of entries, etc. You can even do things
like c[’T’] = c[’T’] + 273.15 to convert a temperature from Celsius to Kelvin in-place, and can
do similar things to create new columns that don’t initially exist. You can compute the average of a
column using constructions like sum(c[’T’])/len(c[’T’]). Many other array arithmetic operations
can be done using the array functions available through numpy or its older version Numeric.

Problem 1.1.4 Interpolation

It commonly happens that one has data from observations or a model tabulated on a discrete
set of points, but needs to be able to determine the value at an arbitrary point within the range
covered by the data. The technique required to deal with this situation is called interpolation.
An interpolation routine takes an array of values of the independent variable [Xo, X1, ..., Xn] and
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corresponding data values [Yo, Y1, ..., Yn], and on this basis provides a function f(x) which estimates
the value of the independent variable at an arbitrary value x of the dependent variable. In general,
the list of independent variables should be sorted in monotonically increasing or decreasing order
before carrying out interpolation.

The simplest form of interpolation is linear interpolation, where one determines the inter-
mediate values by drawing a straight line connecting the neighboring data points. Polynomial

interpolation is similar, except that one finds the m nearest points to x and uses them to determine
an ((m − 1)th order polynomial that exactly goes through all the data points. m is usually taken
to be a fairly small number, perhaps between 2 and 10. The case m = 2 corresponds to linear
interpolation. There are more sophisticated interpolation techniques, which you can read about in
Numerical Recipes, but polynomial interpolation will be adequate for our purposes.

Write a basic general purpose linear interpolation routine. Try it out on the data X=

[1,2,3,4], Y=[1,8,27,64], subsampled from y = x3, and plot the results at high resolution to
make sure everything is working. Then, write or learn to use a polynomial interpolation routine.
Do the same, and verify that the procedure recovers the cubic behavior exactly. Try subsampling
the function y = sin(x) with various numbers of points, and see how well polynomial interpolation
of various orders reproduces the original function.

Next, read in the Vostok temperature dataset discussed in Problem 1.1.2 . The first column
is depth, and this data set is already averaged down to a uniform 1 m depth interval for each data
point. However, this layer depth corresponds to a longer time interval for old ice than for the
young ice which has not been as stretched out; snow accumulation rate also affects the depth-time
relation. The second column is the ice age, and this scale has non-uniform intervales. Suppose you
need time series data on regular time grid with uniform 100 year intervals? Create such a series of
deuterium composition (third column, a measure of the past temperature) by doing a polynomial
interpolation using the ice age data as the independent variable array and the deuterium data as the
dependent variable array. Try including different numbers of points in the polynomial interpolation
to see how that affects the results.

Python tips: Polynomial interpolation from a table of values is implemented in the courseware
by the function polint. This function evaluates a polynomial that goes through all the points in
the table. In practice, this works best if the fit is done based just on a few points in the table
nearest to the interpolation target. The full procedure, including identification of the n nearest
points, is implemented by the interp class, which creates a function (strictly speaking, a callable
object) that returns the interpolated value of the dependent variable given the desired dependent
variable value as its argument.

Problem 1.1.5 Root finding

Find the solution of x − exp(−x) = 0. First do it by the bisection method on the interval
[0, 1]. Then do it using Newton’s method.

Python tips: In the courseware, Newton’s method is implemented via the class newtSolve,
which creates an object that finds the zeros of a given function given an initial guess.

Problem 1.1.6 Quadrature

Evaluate the definite integral
R a

0
exp(−x2)dx for a = 2 using the Trapezoidal Rule approxi-

mation. Then, used multiple Trapezoidal Rule evaluations together with Romberg extrapolation
to obtain a more accurate result with less work. Then, use the numerical evaluation to show how
the integral varies as a function of a. What happens at very large a?
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Python tips: In the courseware, quadrature using the trapezoidal rule and Romberg extrap-
olation is implemented via the class romberg, which creates an object that carries out the integral.
Note that if you want to try writing your own Romberg extrapolation quadrature routine, that the
function polint can be used to do the needed polynomial extrapolation, as can the class interp.

Problem 1.1.7 ODE integration in 1 dimension

Numerically solve the logistic equation

dY

dt
= aY · (1− Y ) (1.1)

subject to the initial condition y(0) = .01. Compare results using the midpoint method with results
using Runge-Kutta, and discuss the dependence on the time step you use.

Python tips: In the courseware, the Runge-Kutta integration is implemented via the class
integrator, which creates an object which carries out the integration. You should try implementing
your own midpoint method as a loop in Python.

Problem 1.1.8 ODE integration in 2 dimensions

Numerically compute the solution of the system

dY

dt
= − Z

Y 2 + Z2
,
dZ

dt
=

Y

Y 2 + Z2
(1.2)

subject to the initial condition Y = 1,Z = 0. Compare results for the midpoint and Runge-Kutta
methods, and discuss the dependence on the time step you use.

Python tips: This can be done using the integrator class, which works for an arbitrary
number of dependent variables.

1.1.2 Basic physics and chemistry

Problem 1.1.9 The acceleration of gravity on Earth is 10m/s2, in round numbers. How much force
(in N , i.e. Newtons) does a 1kg object exert when at rest? How much energy (in J , i.e. Joules)
does it take to lift a 1kg object to a height of 100 m?

On the average about 200 J of solar energy falls on each square meter of Earth’s surface
each second – that’s 200W/m2 (1 W , or Watt, is 1 J/s). If all this energy could be converted to
mechanical work, how many kg/s can be lifted to 100 m?

There are about 10,000 kg of air over each square meter of Earth’s surface. How long would
it take to lift all the Earth’s air to an altitude of 200 km, if all the incoming solar energy could be
used for this purpose? (You may assume the acceleration of gravity to be constant over this range
of altitudes). Why doesn’t this happen to Earth’s atmosphere?

Problem 1.1.10 A small comet with a mass of 4 · 109kg strikes the Earth with a speed of 10 km/s.
How much energy is released? Express the answer in Joules (J).

Problem 1.1.11 The surface gravitational acceleration on Titan is 1.35 m/s2. The radius of Titan
is 2575 km. Use Newton’s law of gravitation to determine Titan’s mass. (The gravitational constant
G is 6.674 · 10−11m3/kgs2).
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Problem 1.1.12 Some aggressive space aliens halt the orbital velocity of the Moon, so that it falls
like a rock upon the Earth. How much kinetic energy does the Moon have when it hits the surface?
(Hint Use conservation of kinetic plus potential energy.). What is its speed at the time of impact,
ignoring air resistance? Does the speed depend on the mass of the Moon?

Problem 1.1.13 An impactor with the mass of the Moon hits the Earth with a speed of 15 km/s.
The object is made of silicate rock. Is the energy released enough to vaporize the object? Does
your answer depend on the mass of the object? Note: It takes about 2 · 107J to vaporize 1 kg of
silicate rock.

Problem 1.1.14 Bolometric magnitude

What is relevant for the climate of a planet is the power output of the planet’s host star – its
luminosity. What astronomers observe is the flux of energy from the star which reaches a telescope
on Earth or in orbit. Suppose that the energy flux measured at the telescope is F . Astronomers
generally transform the flux into magnitudes, defined by the expression

M = C − 2.5 log10(F ) (1.3)

where C is a constant chosen by convention which depends on the zero-magnitude reference. This
magnitude is called the apparent magnitude because it corresponds to how bright the star seems as
seen from Earth. The expression has its roots in the perception of relative brightness by human
vision.

The magnitude defined above is called the apparent bolometric magnitude if it is based on
the total flux over all wavelengths. In this case, the zero-magnitude convention is C = −18.98

if F measured in W/m2. With this convention, the star Vega has approximately zero apparent
magnitude. The Sun has an apparent bolometric magnitude of -26.82 as seen from Earth’s mean
orbit.

Assume that the star is at a distance d from the telescope and that its luminosity is L~.
The radiation from the star spreads out uniformly over a sphere of radius d, and there is no
absorption by the intervening interstellar medium. Find an expression for L~ in terms of the
apparent bolometric magnitude and d/ro, where ro is the radius of the Earth’s mean orbit. Hint:

Use the apparent magnitude of the Sun, given above.

The red dwarf star Gliese 581,which hosts some interesting planets, has an apparent bolo-
metric magnitude of 8.12, and is located at a distance of 6.27 parsecs. (1 parsec = 3.086 · 1016m)
What is its luminosity relative to that of the Sun? If a planet were in orbit about Gliese 581, how
close would it have to be to the star in order for the stellar flux incident upon the planet to equal
the Solar flux incident upon Earth?

Absolute magnitude is the magnitude as seen from a standard distance of 10 parsecs. What
is the absolute bolometric magnitude of the Sun? Of Gliese 581?

There’s actually a bit more to learn about magnitudes. Astronomers typically report the
magnitude as seen through various standard filters, for example ”V-magnitudes” for yellowish light.
These must be converted to bolometric magnitudes using a bolometric correction factor. This issue
will be explored later, in Problem 3.1.11.

Problem 1.1.15 Luminosity is the net power output of a star, which we will measure in W . The
proton process fuses four protons (hydrogen nucleii) into helium, yielding 4.17 · 10−12J of energy.
Assuming constant luminosity, find a relation between the mass of the star and its lifetime on
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the main sequence, assuming the star to be initially hydrogen-dominated. How does your answer
change if you use Eq. ?? to take into account the increase in luminosity over time? In this
application of the formula, the parameter t� should assumed to represent half the star’s lifetime
on the main sequence, and the formula should be considered valid only out to times 2 t�.

If T is the surface temperature of the star, then the radiation flux in W/m2 out of the surface
is 5.67 · 10−8T 4. You will learn more about this formula in Chapter ??. Use this to estimate the
surface temperature of the star in terms of its radius. This also gives you the spectral class of the
star, since cooler stars are redder. Then, if you have a relation between the mass of the star and
its radius, you have a relation between lifetime and spectral class. Use this to show that the bluer
stars are more short-lived, assuming that the density is independent of mass. A more accurate
calculation would need to take into account the compressibility of the star’s substance.

Problem 1.1.16 The Sun puts out energy at a rate of 3.84 · 1026W . A resting human consumes
(and puts out) energy at a rate of about 100W . Look up the mass of the Sun, and determine which
of these two bodies requires more energy production per unit of mass. Using the data given in
Problem 1.1.15, determine how much mass of hydrogen would constitute a lifetime supply of food
if humans could eat hydrogen and fuse it into helium?

Problem 1.1.17 In 2009, the world fossil-fuel emissions of carbon in the form of CO2 was about
9 Gt (1 Gt = 1 Gigatonne = 109 metric tonne = 1012kg). If all of this carbon were turned into
calcite (CaCO3), how many Gt of calcite would you have? If it were spread evenly over the state of
Kansas (surface area 213,000 km2), how deep would the layer be? The density of calcite is about
2700 kg/m3.

Problem 1.1.18 How many molecules of CO2 are produced by the annual emission of 9Gt carbon?
Earth’s atmosphere contains about 1044 molecules in all, most of which are N2 and O2. If all the
CO2 from fossil fuel emissions stayed in the atmosphere, how much would the atmospheric CO2

concentration increase each year? Express your answer in terms of the number of CO2 molecules
per million air molecules (i.e. ppm molar, also called ppmv).

1.1.3 Stable isotope calculations

Problem 1.1.19 Some ice that you dig up in Greenland has a δ18O of -37 h. What is the ratio of
18O to 16O in this ice? Recent ice in Antarctica has δD = -438 permil. What is the ratio of D to
H in this ice?

Problem 1.1.20 Assuming the mean δD for Antarctic ice to be -420 h, how much does the removal
of 300 m depth of ocean water to form an Antarctic glacier shift the δD of the remaining ocean
water?

Problem 1.1.21 Suppose that we write the equilibrium fractionation factor for phase 2 to phase
1 as f1,2 = 1 + ε, where ε generally has small magnitude. Show that the shift in δ values between
the two phases is

δ1 − δ2 = (1 + δ2)ε (1.4)

In the typical case, where δ2 is small, this formula leads to the convenient approximation that the
shift in δ between the phases is constant. This approximation breaks down if |δ2| is not small. The
precise statement of the physics at constant temperature is that the fractionation factor remains
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constant as mass is transferred from one reservoir to another. The approximation of a constant
shift in δ is adequate for most common purposes, though.

Suppose that at 290K the δ18O of water vapor in equilibrium with liquid having δ18O = 0 is
-10 h. What is the value of ε?

Problem 1.1.22 A mass of liquid water with initial δ18O of zero is brought into contact with dry
air in a closed box. The mass evaporates until the air is saturated (i.e. holds as much water as
it can). The isotopes are in equilibrium between liquid and vapor phases. The box is big enough
that once equilibrium is reached, 1% of the mass of the water has evaporated. What is the δ18O of
the vapor at that point? What is the δ18O of the remaining liquid? Then, new dry air is brought
into the system, flushing out the moist air and the process is repeated, allowing another 1% of the
remaining water to evaporate. What are the δ18O values now? Continue in this fashion, and make
a graph of the time series of the δ18O of the vapor exhausted from the box and the δ18O of the
remaining water. You may assume that the entire experiment takes place at a fixed temperature
of 290K. (See Problem 1.1.21 for useful information.)

Problem 1.1.23 A tale of two lakes

A full lake is separated from an empty lake basin by a tall mountain range. The full lake
initially is filled with water having δ18O = 0h. A wind starts to blow from the full lake towards the
empty basin, picking up water from the lake as it goes. The water that it picks up is in equilibrium
with the lake water at all times. As the moisture-laden air blows up the mountain slope, moisture
condenses out bit by bit. Each time moisture condenses out, it flows back into the originally full
lake. The water that condenses is always in equilibrium with the vapor from which it condenses.
As the moist air climbs the mountain, first 1% condenses out. Then another 1% of the remaining
condenses out and so on. This happens 50 times by the time the top of the mountain is reached.
What is the δ18O of the vapor that reaches the top of the mountain? You may ignore the effect of
temperature on the fractionation factor, and assume it remains constant. (See Problem 1.1.21 for
useful information.)

The air that crosses the top of the mountain mixes with some very frigid air, and all of the
remaining vapor condenses out, falls into the initially empty lake and begins to fill it. Eventually
the first lake will empty and all the water will have been transferred to the second lake. Describe
the time evolution of the δ18O of each lake, shown as a function of the fraction of the initial lake
volume that has been transferred from one lake to the other.

Now, suppose that instead of all the water being transferred, the second lake basin is shallow
and there is a river channel connecting the top back to the first lake. When the second lake fills
to one fourth the initial volume of the first, water flows back into the first lake at the same rate
as water rains out into the smaller lake. The water running back mixes uniformly with the water
in the big lake. What is the δ18O in each lake once this process reaches equilibrium? What would
the δ18O be if the mountain were made taller, so that 75 precipitation steps of 1% each were made
as the air crossed the mountain?

Say why this process is analogous to the isotopic effect of the transfer of sea water into an
accumulating land glacier which eventually equilibrates by melting at a rate equal to the accumula-
tion of new snow. State why making the mountain taller has an effect on the isotopic composition
of the second lake which is analogous to the effect of a polar temperature decrease on the isotopic
composition of the Antarctic or Greenland glacier.

Problem 1.1.24 During the PETM , a large quantity of isotopically light carbon was released into
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the atmosphere/ocean system. What does the change in measured δ13C say about the amount of
carbon released? This problem deals with that question in a simplified setting.

Suppose that 700 Gt of carbon was released into the atmosphere in the form of CO2, from
oxidation of organic carbon having δ13C = −25h. Suppose all this CO2 stays in the atmosphere.
How much does the atmospheric δ13C shift if the atmosphere initially contains 700 Gt of carbon
in the form of CO2 (roughly equal to present Earth levels)? Does the answer depend on what the
initial atmospheric δ13C is? What happens if the atmosphere initially contains 1400 Gt of carbon?
What would happen if the carbon instead were released in the form of biogenic methane, with
δ13C = −50h, which was subsequently oxidized into CO2 in the atmosphere?

The organic carbon release used in this problem is unrealistically low because on the real
Earth, most of the CO2 added to the atmosphere will be taken up by the ocean over a few thousand
years, and the δ13C in the atmospheric carbon will come into equilibrium with the δ13C in the
oceanic carbon. As a very crude attempt at incorporating this effect, assume that 7000 Gt was
released, and that the 13C is shared equally amongst a total atmosphere/ocean carbon pool which
is about 100 times the mass of carbon in the atmosphere alone. Assume further that the δ13C of
carbonates deposited in the ocean mirrors the shift in the δ13C of the total carbon pool. Compare
your result to the 1.2 hlightening observed in PETM carbonates. Note that one needs to know
quite a bit of oceanic carbonate chemistry to do this problem properly, accounting for the isotopic
exchanges of carbon amongst all the reservoirs in the system. Note further that the size of the
carbon pool the atmosphere exchanges with is a quite separate question from how much of the
added CO2 remains in the atmosphere after various lengths of time.

Problem 1.1.25 Consider a planet with no photosynthesis. The planet has no ocean, though
there is enough water around to keep the soil damp and sustain some forms of life. CO2 outgassing
from the interior creates a pure CO2 atmosphere containing a mass M of carbon in the form of
CO2. Then outgassing ceases, and the atmosphere stops accumulating. The δ13C of the carbon in
the atmosphere is -6 hat this point. The surface mineralogy on this planet does not permit the
formation of carbonates.

At this point, oxygenic photosynthesis evolves, and starts converting the atmosphere into
O2, which stays in the air, and organic carbon, which accumulates in a layer on the ground. The
photosynthetic organisms fractionate carbon by -25 hrelative to whatever value the air has at the time

they grow. All their carbon comes from the air. In the first year, they convert 1% of the CO2 into
organic carbon, which accumulates in a layer. Then they die, and the next year a new crop grows,
which converts 1% of the remaining CO2. Graph the time series of the δ13C in the air, resulting
from this process. If, after a long time, one were to drill a core into the organic carbon layer, what
would the profile of δ13C vs. depth look like? You may assume that none of the carbon in the
organic layer ever gets oxidized back into CO2.

Now assume instead that the carbon cycle is in equilibrium between volcanic outgassing
and organic burial. Each year, 1% of the carbon in the atmosphere is buried in the organic layer,
and each year that same amount is replaced by outgassing at -6h. Describe how the δ13C in the
organic layer and atmosphere behave in that case. Does the behavior depend on the equilibrium
mass M of carbon in the atmosphere? What happens to the mass of O2 in the atmosphere as time
progresses? Why doesn’t this happen on Earth?

Problem 1.1.26 The file BenthicTropPacificB.txt ,located in the marineCores subdirectory of the
data directory for this chapter, contains δ13C and δ18O data from benthic forams, recovered from
a tropical Pacific ocean sediment core. The data covers the past 5 million years. Read in the data.
What is the typical variation in δ13C over this time period? If the changes were entirely due to
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changes in organic carbon burial rate, which times would have high burial rate and which would
have low burial rate? Try to estimate the implied changes in burial rate. (Note: In reality δ13C is
subject to a number of other influences, including the amount of CO2 available in the ocean).

Now look at the δ18O data. Convert the data to ice volume, assuming the entire variation
is due to ice. Convert the data to temperature using the paleotemperature equation, assuming
the entire variation is due to changes in the deep ocean temperature. Which limiting case do you
think is closer to the truth?
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2.1 Workbook

Python Tips Many of the following problems require thermodynamic data such as specific heats,
latent heats, etc. Most of the necessary data is given in the thermodynamic table for this chapter,
and the rest can be found easily from standard print and online references. Python users can get the
data directly from the phys courseware module, which defines gas objects for a number of common
gases. Each gas object contains the data for the corresponding gas. For example phys.N2.cp is
the specific heat (at standard temperature) for N2. Type help(phys) and help(gas) for more
documentation, or look directly at phys.py. The phys module also contains general constants
such as the Boltzmann thermodynamic constant (phys.k) and many others, as well as a number of
handy functions and routines which will be introduced below as needed. To use the phys module,
type import phys from inside the Python interpreter.

2.1.1 Basic dry thermodynamics

Problem 2.1.1 A spherical spaceship with radius 10 meters is pressurized to an interior pressure
of 1000mb. The exterior pressure can be regarded as zero. What is the net force (in Newtons)
exerted on the walls of the spaceship?

Problem 2.1.2 A hollow metal sphere of radius 1 meter is cut in half and then fitted back together
with an airtight rubber gasket. All the air is then removed from the inside using a vacuum
pump. The external air pressure is 700mb. What is the total force (in Newtons) exerted by air
on each hemisphere? What is the component of this force in the direction parallel to a diameter
perpendicular to the plane along which the two hemispheres are joined? How much force would
have to be exerted in order to pull the two hemispheres apart?

Problem 2.1.3 What is the density of Earth air at a temperature of 0 degrees C (centigrade) and
pressure of 1000mb? At the same pressure, what is the density of air in a hot air balloon in which
the temperature has been increased to 50 degrees C? If the balloon is approximately spherical and
has a radius of 3 meters, how much mass could it lift in Earth’s gravity, if the ambient temperature
is 0C? (Recall: Archimedes’ law states that the buoyancy force is equal to the weight of the fluid
displaced. The opposing force on the balloon is the force of gravity on the air in the balloon itself,
which much be subtracted from the buoyancy force.)

Problem 2.1.4 This is an elementary computer problem which exercises the skills needed to write
and use a function.

Write a function rho(p,T) which returns the density of a gas given the pressure and the
temperature. Check your function by recomputing the density of air at 0 degrees C and 1000mb.
The value of the universal gas constant can be hard-wired into the function, but you will need
to find some way to specify the molecular weight of the gas in question. This can be hard-wired
into the function (requiring you to edit the function when you want to change gases) or made
into an additional argument of the function (requiring you to remember to pass a value which you
probably aren’t changing too often). A better solution is to put the data in a shared space that
can be accessed by all functions. The particular way one does this depends on which computer
language one is using.

Python Tips: Treat the molecular weight of the gas as a global, so that you can use the
function for different gases by just re-defining the value of the global before calling the function.
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Problem 2.1.5 A bicycle tire with a mass of .1kg when empty, and a volume of 3liters is pumped
up with Earth air to a pressure of 4bars. It is pumped up slowly, so that its temperature remains
at the ambient air temperature of 290K. What is the mass of the tire after it has been pumped
up? On Earth,what does the tire weigh (in Newtons)? What would the mass of the tire be if it
were filled to the same pressure with CO2 instead of air? With He?

Problem 2.1.6 Compute the density of CO2 at the surface of Mars, where the pressure is 6mb and
the temperature is 220K. Compute the density of N2 at the surface of Titan, where the pressure is
1.5bar and the temperature is 95K. Compute the density of a pure CO2 atmosphere at the surface
of Venus, where the pressure is 92bars and the temperature is 737K.

Problem 2.1.7 Assuming the Earth’s atmosphere to contain 20% O2 by count of molecules and
80% N2, what is the mass mixing ratio of oxygen? What is the mass-specific concentration?

Problem 2.1.8 The air in a room with dimensions 3m by 20m by 20m has a CO2 concentration
of 300ppmv. How many kilograms of carbon would have to be burned into the air (or exhaled by
students) in order to double the CO2 concentration in the room? If the O2 concentration is initially
20% (molar), what is the concentration after the burning (or respiration) has taken place?

Problem 2.1.9 Making the Earth’s Oxygen

Photosynthesis performs a kind of solar-powered electrolysis, taking water (H2O) and carbon
dioxide (CO2) and using them to make organic matter– where the carbon and hydrogen and some
of the oxygen go – and releasing the rest of the oxygen in the process. For the purposes of this
problem, you can consider an organic molecule to be CH2O, though real organics are typically
more complex. The Earth’s atmosphere contains about 20% O2 (molar), and the oxygen can be
considered well-mixed out to a great altitude.

Consider a patch of ocean of some surface area A. How deep a layer of water needs to be
converted by photosynthesis to create the oxygen in the air above that patch? How many moles
of organic matter will be made in the process? How many kilograms?

Problem 2.1.10 First Law for a Non-Ideal Gas

Beginning from the First Law in the form in Eq. ??, show that for a gas with a general
equation of state ρ(p, T ) the First Law can be re-written

δQ = cpdT − 1

ρ2

∂ρ

∂p
|T dp (2.1)

and find an expression for cp in terms of cv. Show that when ρ is given by the ideal gas equation
of state, your results reduce to the expressions derived in the text for the ideal case.

Problem 2.1.11 Suppose that sunlight heats a patch of the Earth’s surface at a rate of 300 W/m2,
and that turbulence instantly distributes this heat over a column of boundary layer of depth 500m.
This means that 300 Joules of energy go into a column with base of 1 square meter and height of
500m each second. Assuming the boundary layer to be filled with Earth air with density 1kg/m3,
at what rate does the temperature of the column increase, if there is no heat loss from the column?
Re-do the calculation for the present Martian climate, with a pure CO2 atmosphere having surface
pressure of 6mb, assuming the density to be constant over 500m, the temperature to be constant
at 240K, and the solar radiation to be 150 W/m2.
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Problem 2.1.12 Use the Boltzmann constant to calculate the mean kinetic energy of a helium
atom in a gas with a temperature of 300K. What is the typical speed with which the atom moves?
Recall that kinetic energy is mv2/2, and that each direction of motion counts as a separate degree
of freedom. (The mass of a helium atom is 6.642x10−27 kg).

Problem 2.1.13 Temperature-dependent specific heat

This is a computer problem involving temperature-dependent specific heats. To do the
problem, you will need to know the following programming techniques: (1) Defining and evaluating
a function; (2) Tabulating a set of values and either plotting them or writing them out for plotting
with a separate program; (3) Summing up a set of values in a loop.

The Shomate equation is an empirical formula for the dependence of specific heat on temper-
ature. It works well for a broad range of gases. The formula reads:

cp = A + B ∗ (T/1000.) + C ∗ (T/1000.)2 + D ∗ (T/1000.)3 + E ∗ (T/1000.)−2 (2.2)

where T is the temperature in Kelvins and A, ...E are gas-dependent constants. Some coefficient
sets are given in Table 2.1.

A B C D E
N2 931.857 293.529 -70.576 5.688 1.587
CO2 568.122 1254.249 -765.713 180.645 -3.105
NH3 1176.213 2927.717 -904.470 113.009 11.128

Table 2.1: Shomate coefficients for selected gases, valid from 300K to 1300K for CO2 and NH3,
and 300K to 6000K for N2

Write a function to compute cp(T). Explore the behavior for the three gases, taking note of
the degree to which the specific heat varies. Make a plot of the temperature dependence. From
a physical standpoint, why do the specific heats increase with temperature? Measurements show
that the specific heat of He is very nearly temperature independent. Why?

Compute the energy it would take to raise the temperature of 1kg of N2 from 300K to 700K,
in steps of .1K (assuming cp to be constant within each step). Compare this to the value you would
have gotten if cp were assumed constant at its value in the middle of the temperature range. Hint:

Write a loop to sum the energies in each step.

Python Tips: It is convenient to store the Shomate coefficients for each gas in a list,e.g.

N2_coeffs = [931.857,293.529,-70.576,5.688,1.587]

If you do this, you can set all the coefficients at once with a statement like A,B,C,D,E = N2 coeffs.
A good trick is to define the lists as globals outside the function definition for cp(T), and to have
the function refer to the list of coefficients as, e.g. ShomateCoeffs. Then, to switch from one gas to
another, all you have to do is set ShomateCoeffs to the list you want before you call cp(T), as in
ShomateCoeffs = N2 coeffs.
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2.1.2 Potential temperature, dry adiabats and inhomogeneous atmo-
spheres

Problem 2.1.14 The aforementioned bicycle tire with a volume of 3 liters is again pumped up with
Earth air to a pressure of 4 bars. This time, it is pumped up so rapidly that there is not enough
time for it to lose any heat to the surroundings. Assuming the ambient air has a temperature of
290K, what is the temperature inside the tire immediately after it has been pumped up? What is
the pressure after the tire has had time to cool down to the ambient temperature?

Problem 2.1.15 The atmosphere of Jupiter is predominantly H2. A space probe determines that
the temperature is 150K at a pressure of 105Pa. At what pressure does the temperature reach
300K if the atmosphere is well mixed and there is no condensation of any substance? Compare
your results with the observed temperature profile for Jupiter given in the text.

Problem 2.1.16 The current atmosphere of Earth consists of about 20% O2 by moles, and 80% N2.
Compute the dry adiabat (i.e. temperature vs. pressure with fixed θ) for the pre-biotic atmosphere
without any oxygen, and compare with the dry adiabat for an atmosphere with 20% Oxygen and
80% Nitrogen.

Problem 2.1.17 You live on a planet with a pure CO2 atmosphere with surface pressure of 1 bar.
The acceleration of gravity is 10m/s2. Design a ”nitrogen balloon” (filled with N2) to lift a mass
of 100kg, under conditions when the low level temperature is 280K.

Problem 2.1.18 A wind of pure N2 with a temperature of 100K blows over a methane (CH4) lake
on Titan. The lake has a temperature T , and a thin layer of atmosphere in contact with the lake
exchanges heat so that its temperature is also T . Enough methane evaporates from the lake to
bring the molar concentration of methane in this layer to a value η. The surface pressure is 1.5bar.
Since we are assuming the atmosphere is pure N2 above a thin layer in direct contact with the
lake, the methane evaporation has essentially no impact on surface pressure. For what range of T

and eta will the layer of atmosphere in contact with the lake be positively buoyant relative to the
pure N2 just above it?

Problem 2.1.19 Referring to the Venus temperature profile in Figure ??, discuss the extent to
which the Magellan observations of the temperature of the Venus atmosphere are consistent with
a CO2 dry adiabat. Extrapolate the temperature from the highest observed pressure to the 92bar

surface of the planet, and compare the result to the observed surface temperature of 737K. (Note
that part of the mismatch is due to the assumption of constant cp and the inaccuracy of the perfect
gas law at high pressures)

R/cp ≈ .2304 for CO2 gas.

Problem 2.1.20 In this computer problem, you will compute the dry adiabat T (p) for an ideal gas
whose specific heat depends on temperature, in accord with the Shomate equation (See Problem
2.1.13). In addition to basic skills such as defining functions and loops, you will need to know how
to write programs that find approximate solutions to an ordinary differential equation of the form
dY/dx = f(x, Y )

First, use the First Law of Thermodynamics to derive a differential equation for d ln T/d ln p

assuming δQ = 0. This defines the dry adiabat. Note that since cp is a function of T , you can no
longer treat it as a constant in doing the integral.
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Write a program that tabulates approximate solutions to the differential equation. Note
that your dependent variable is Y ≡ ln T whereas the right hand side of the differential equation
involves T . This is not a problem, since you can write T = exp(ln T ). In writing your program,
assume that cp(T ) is defined by the Shomate equation.

Apply your program to obtain an improved approximation to the dry adiabat in a pure CO2

Venusian atmosphere, which you originally computed in Problem 2.1.19. Start your computation
at the ground (ps = 92bars) with the observed mean surface temperature of Venus (737K). Inte-
grate up to the 100mb level, and compare the temperatures you get with those in the Magellan
observations shown in Figure ?? of the text. Make a plot comparing your calculations with the
dry adiabat obtained by keeping cp constant at 820J/kg.

2.1.3 Data Lab: Analysis of temperature soundings

Problem 2.1.21 Analysis of Tropical Earth Soundings

In this Data Lab we’ll look at a set of balloon soundings of the atmosphere over the tropical
Pacific, taken from shipboard during the CEPEX field campaign. The data is located in the
subdirectory cepex sondes. The files are named according to the date/time of release, in the form
yymmddhh.txt.

To get started, let’s read in a profile and take a look at it. First read the data from
93031512.txt into your software. Note that the pressure is in millibars. The data files also contain
relative humidity data, but we will not be using that for now. Make a plot of T (p), and make sure
it looks like the plot given in the text. To follow the usual conventions in a sounding plot, you
should use a logarithmic pressure axis, and reverse the axis so that high pressure appears at the
bottom.

We are now ready to take a more systematic look at tropopause height. The temperature
minimum may be taken as a rough guide to the boundary of the troposphere, though it is known
that there are some inadequacies in defining the tropopause this way. The general procedure is
to look at the temperature array (or ”column”) T which has been read into your software, and
find the index i which corresponds to the minimum temperature. Then the corresponding element
i of the pressure array p is the tropopause pressure you want. The precise procedure for doing
this depends on the language or software you are using. Try out the procedure on a few files in
the data set, then write a function that takes the temperature and pressure array and returns the
tropopause pressure.

Next, write a loop that loops over all the files in the data set and finds the tropopause
pressure for each. (This may be easy or difficult, depending on what kind of programming language
you are using). Summarize the results you find. How much does tropopause pressure vary among
these soundings? All of the data in this dataset has been interpolated to a common set of pressure
levels. This makes it easy to compute statistics over the sounding. Write a loop to compute the
average temperature profile over the whole dataset. The loop will look rather like the one you used
for analyzing tropopause height, but instead of just computing the tropopause pressure, the body
of the loop will accumulate an array whose i’th element is the cumulative sum of the temperatures
at the i’th pressure level. You would also keep track of the number of soundings read, then divide
by this at the end to get the average. Try this out. Then improve your loop so it also computes the
standard deviation of the temperature at each level about its mean at that level. At what heights
does temperature vary the most? At what heights is it most weakly variable?

Next, pick a sounding, and use the ideal gas law to compute the density as a function of
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pressure. Remember that you need to convert the pressure from mb to Pascals when carrying out
the calculation. Plot the computed density.

Now, write a function that computes the dry potential temperature profile θ(p) from data
in a specified file. Look at a few plots. Which parts of the atmosphere are very statically stable?
What part is closest to a dry adiabat? Process the entire dataset (or as much as you can), and
examine the values of θ(600mb)− θ(1000mb) and θ(200mb)− θ(600mb). Discuss your results.

Python Tips:

Recall that you can use the functionreadtable in ClimateUtilities to read each sounding
into a Curve() object. For example if datapath is the string containing the directory where the
sounding data files are located, then

sounding = readTable(datapath+’93031512.txt’)

sounding.YlogAxis = sounding.reverseY = sounding.switchXY =True

will read the data into a Curve() object called sounding. The second line sets the correct plotting
options for a sounding.

There are a few functions available to Python which can help you find the temperature
minimum and hence tropopause pressure. For any indexed object data, such as a list, the function
min will find the minimum value in the list, and the list method index will find the index where
that value occurs. Thus, if T is your temperature array, i = T.index(min(T)) finds the index where
the minimum occurs, then p[i] is the corresponding pressure. If you are using the Numeric or an
equivalent array module, then i = Numeric.argmin(T) will directly find the index of the minimum
temperature.

The glob function in the glob module, which is part of most standard Python distributions,
can generate lists of filenames in a directory, which you can then loop over in doing your analysis.
glob.glob() accepts wildcard characters in its argument, the most important of which is the aster-
isk. Thus, glob.glob(’*.txt’) returns a list of all the files in the current directory whose names
end in ”.txt”. Try it out on a few of your directories, then try the following:

from glob import glob

from ClimateUtilities import *

datapath = <Your Path Here>

files = glob(datapath+’93*.txt’) #Makes a list of files matching pattern

for file in files:

sounding = readTable(file)

i = Numeric.argmin(sounding[’T’]) #Finds index at which minimum T occurs

print file,sounding[’p’][i],T[i]

In doing manipulations with the data, you can make use of the fact that a Curve() object
returns arrays on which arithmetic can be done without the need for a loop over elements. For
example, to compute an average temperature, you first create an array of the correct length ini-
tialized to zero, using Tbar = Numeric.zeros(len(sounding[’T’]),Numeric.Float). Then, inside the
loop over files, you only need a statement like Tbar = Tbar + c[’T’]. Similarly, you can compute
the dry potential temperature array from your temperature and pressure array using a single-line
statement.

Problem 2.1.22 Analysis of midlatitude and polar Earth soundings
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To see how the vertical structure of the atmosphere changes at mid and high latitudes, we
turn to data from a global historical network of regular sounding stations. This dataset is rather
sparse in the tropics, and even more so over the tropical oceans, which is why we used a special
dataset to investigate the tropical structure. The dataset provided here is a very tiny subset of
the vast CARDS sounding dataset, and is located in CARDS sondes. The files are named according
to the station number, date, and time. A list of stations and their locations is given in the file
stations.txt.

Pick a few midlatitude stations, and look at the temperature profiles. How well defined is
the tropopause? How does the tropopause height vary throughout the year? How do the values of
∆θ/∆p in the lower and upper troposphere compare with those you found in the tropical case?

Now focus on Northern Hemisphere winter, and try to discover something about how
tropopause height varies with latitude.

Finally, pick one of the Antarctic soundings, and take a look at the seasonal cycle of tem-
perature. How high is the tropopause in Summer? Can a tropopause be identified in the dead of
winter? What is the temperature structure near the ice surface? What do you think is happening
there to cause that temperature structure?

Problem 2.1.23 Analysis of planetary soundings

First, we offer two very small datasets, which represent nearly all that is known about
the vertical structure of the atmospheres of Jupiter and Venus. Chapter2Data/GalileoProfiles/

contains one brave sounding of the Jovian atmosphere, conducted by the Galileo probe. Note
that the pressure is reported in bars. Take a look at this sounding, and compare the temperature
profile with the dry adiabat for various mixtures of H2 and He, ranging from all hydrogen to all
helium. From the appearance of Jupiter it is clear that the atmosphere is full of clouds, and hence
condensation is widespread. Why do you think the dry adiabat works so well for this sounding?

The next small data set consists of a set of temperature profiles for Venus, obtained by
examining the transmission of radio waves through the Venusian atmosphere. The first group of
data is from a set of four probes dropped into the Venus atmosphere by the Pioneer Venus mission.
These soundings are contained in VenusPioneerProfiles. The second group of data was taken by
the Magellan probe, whose main mission was actually radar mapping of the surface of the planet.
This data set only covers roughly the upper 7 bars of the atmosphere, whose surface pressure is
90bars. The soundings are contained in Chapter2Data/VenusMagellanProfiles.

Make plots of the soundings. Do you see any structure resembling a stratosphere? Do the
temperatures differ much from one sounding to another? Compare selected Magellan soundings
with the Pioneer Venus soundings.

In what part of the atmosphere do you think convection is occurring? Compare the tem-
perature profile in this region with the dry adiabat for CO2.

Now we turn to a bigger dataset, with more scope for exploration. The Mars Global Surveyor
mission measured thousands and thousands of temperature profiles of Mars using the same radio
occultation technique as the Magellan data set. The data extends nearly to the ground. The main
limitation of this dataset is that, owing to orbital geometry, it covers a limited range of latitudes and
times of day. In particular, one is limited essentially to late afternoon and night-time data. Hence,
none of these soundings reflect times of most active convection through a strongly heated surface.
The dataset is located in Chapter2Data/MarsRadioOccProfiles. What is provided here is only a tiny
sample of the full dataset. The small subset of the data included in the Workbook datasets focus on
the Southern Hemisphere, because the orbital geometry allows a better examination of the warmer
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part of the day than is the case for the Northern Hemisphere data. Some relatively warm Summer
midlatitude evening soundings are given in the subdirectory SummerSHevening, while corresponding
night-time and near-dawn soundings are in the SummerSHnight subdirectory. Some winter data
in the Southern Hemisphere polar region is given in the WinterSHPolarNight subdirectory. The
description line at the top of each file contains the geographic location of the sounding, and also
local solar time and the angle the sun makes with the local vertical (the solar zenith angle). The
information tag also contains the subsolar latitude, also known sometimes as the latitude of the sun.
This is the latitude at which the sun is directly overhead at noon, and provides a useful measure
of where we are in the seasonal cycle. For example, when the subsolar latitude is 0 degrees, we are
at an equinox. When it is -20 degrees, it is near the Southern hemisphere summer solstice, and
when it is +20 degrees it is near Northern hemisphere summer solstice. Note that not all of the
soundings go all the way to the surface.

First take a look at the midlatitude early evening soundings. Do they generally contain a
region where temperature decreases with height? Compute and analyze the profile of potential
temperature for these soundings, assuming a pure CO2 atmosphere with constant cp. Are any of
these soundings on the dry adiabat? What is the typical static stability (i.e. dθ/dp)? The very
high potential temperatures in the very upper part of the atmosphere may make it hard to see the
structure in the lower portions, so you may want to try eliminating these from the graph. As an
equivalent way of addressing the same question, compare the temperature profiles with the T (p)

corresponding to the dry adiabat based on the observed temperature nearest the ground.

Next take a look at the night-time midlatitude soundings. Where do these differ most from
the early evening soundings? Compute and plot θ(p) for these soundings and discuss the results.

Now take a look at the polar night soundings. The main difference in the physical context
of these soundings is that the midlatitude atmosphere has experienced the warming effect of the
sun within the past day, whereas the polar night soundings have not been touched by sunlight
for months. How does the low level temperature compare with that of the midlatitude soundings?
How about the upper level temperature? Discuss the vertical profile. Are these soundings typically
more or less statically stable than the midlatitude soundings?

Python Tips:

The description line at the top of a text data file is read into the returned Curve() object c

as c.description when you read in the data using readTable).

You can use Python’s array-cross section notation to subset the levels when computing
potential temperature and creating a new curve object for plotting. For example if c is the Curve()

object you read in from the dataset using readTable, c[’p’][0:10] will give you the first 10
pressure levels, starting from the first pressure in the sounding (which is the highest pressure
available, in this dataset).

2.1.4 The Hydrostatic Relation

Problem 2.1.24 Venus has a surface pressure of 92bar, and a surface gravity of 8.87m/s2. 3.5% of
the atmosphere (by mole fraction) consists of N2. Compute the mass of N2 per unit surface area
of Venus, and compare with the corresponding number for Earth’s atmosphere.

Problem 2.1.25 Suppose that the CO2 concentration in the Earth’s atmosphere is 300ppmv, and
that it is well mixed. Compute the mass of carbon located over each square meter of the Earth’s
surface. Compute the total mass of carbon in the Earth’s atmosphere. How does the carbon per
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unit area on Earth compare with the value for the present Martian atmosphere, consisting of pure
CO2 with a surface pressure of about 6mb?

Problem 2.1.26 Titan has a mostly Nitrogen atmosphere with a surface pressure of about 1.5bars.
The gravitational acceleration at the surface of Titan is 1.35m/s2. Titan’s radius is about 2600km.
How much mass of atmosphere is there above each square meter of surface? How does this compare
to the mass of air over each square meter of Earth’s surface? What is the total mass of Titan’s
atmosphere?

Problem 2.1.27 The temperature of Titan’s troposphere, which contains most of the mass of the
atmosphere, is about 100K. The atmosphere is mostly N2. Estimate the density scale height of
Titan’s atmosphere and compare it to Titan’s radius. How does the situation on Titan differ from
that of Earth? For which body is the atmosphere more accurately described as a ”thin spherical
shell”?

Problem 2.1.28 An atmosphere for the Moon

At some time in the future the surface of the Earth becomes uninhabitable, and the few
remaining residents decide to move to the Moon. To make life more congenial, they decide to
give the Moon an N2/O2 atmosphere with a surface pressure of 1 bar. They also add in enough
carbon dioxide to bring the mean surface temperature up to 280K. How much total mass needs
to be brought in to create this atmosphere? If the mass comes in the form of comets, each 10km

in radius, how many are needed? Estimate the scale height of the atmosphere, and compare it to
the radius of the Moon.

Python Tips: The radius of the moon is planets.Moon.a, and the acceleration of gravity at
the surface of the Moon is planets.Moon.g.

Problem 2.1.29 Use the hydrostatic relation show that dT/dz = −g/cp assuming the dry potential
temperature to be constant. Do this first by differentiating the dry adiabatic temperature profile
T (p) and using the chain rule and hydrostatic relation. Then show that you get the same answer
directly by assuming the dry static energy to be independent of height.

The quantity g/cp is called the dry adiabatic lapse rate. Compute the typical value for dry air
on Earth, CO2 on Mars, CO2 on Venus, and N2 on Titan (all based on surface gravity).

Problem 2.1.30 In this computer problem, you will find numerical solutions to the hydrostatic
equation for an ideal gas atmosphere with general T (p) (alternately T (z)). The solution is done in
two different ways. The techniques you will need are: (1) Numerical quadrature (i.e. evaluation of
a definite integral); and (2) Numerical solution of an ordinary differential equation.

As a prelude, first integrate the hydrostatic relation analytically, to find p(z) for an atmo-
sphere whose temperature profile is given by the ideal gas dry adiabat, T (p) = Ts(p/ps)

R/cp . From
the answer to Problem 2.1.29, this is equivalent to T (z) = Ts − (g/cp)z, where g is the acceleration
of gravity. This solution will serve as a check on your numerical solution.

One approach to evaluating the hydrostatic relation is to use Eq. ??, which gives you p(z)

directly once you know T̄ (z). The temperature T̄ can be found for any z by carrying out the
definite integral given in Eq. ??. This works as long as you know T as a function of z. Write a
program to find p(z) using this method. To keep your program general, let the temperature profile
be specified by an arbitrary function T(z). Apply your program to the dry adiabat for Earth air,
with surface pressure 1bar and surface temperature 300K. Compare with the analytical result.
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The above method doesn’t work if you know T (p) rather than T (z). Since it is easy to
measure pressure and temperature but relatively hard to measure altitude, balloon and planetary
probe soundings often provide T (p). There is an easy fix for this problem, since Eq. ?? can be
re-written as dz/d ln p = −RT (p)/g, whence one can get z(ln p) by carrying out a definite integral
with respect to ln p. Write a program to do this, and test it on the dry adiabat. Note that if you
want a graph of p(z), you can just make a graph of z(p) using this routine, and switch the axes (or
equivalently, turn it on its side).

Challenge: Note that if you want p(z) for a whole range of altitudes, it is inefficient to do the
calculation from scratch for each new value of z, using either of the above methods. By dividing
up the definite integral for T̄ into integrals over sub-intervals, write a program that efficiently
computes p(z2) given p(z1) where z1 < z2. Do not assume that the temperature is nearly constant
between z1 and z2.

The second approach is to solve the hydrostatic relation by numerically integrating the
ordinary differential equation in the form given by Eq. ??. This method can actually be faster,
since it doesn’t require the evaluation of exponentials, and has the virtue of very easily giving
results for a whole range of altitudes, without having to re-do the calculation from scratch for each
new altitude. Since T is a function of p, Eq. ?? is an ODE of the form dY/dx = f(x, Y ) with Y ≡ p

and x ≡ z. Write a program to solve the program in this form. Apply it to the dry adiabatic profile
defined above, and check against the analytic result.

2.1.5 Latent Heat and Clausius-Clapeyron

Problem 2.1.31 A spherical comet 1km in radius and with a density twice that of water hits the
ocean with a velocity of 20 km/s. If all the energy is converted to heat and used to vaporize water,
how many kilograms of steam result?

Problem 2.1.32 Consider a glacier of water ice that is 1km thick and covers an area of 108km2

(about a fifth of the area of the Earth). Suppose that the ice absorbs 50W/m2 of solar radiation,
and all of this is used to either sublimate (into gas) or melt (into water) the ice. How long does it
take for the glacier to disappear in each of these cases? Give your answer in years. The density of
ice is about 930 kg/m3 . What determines whether sublimation or melting occurs?

Problem 2.1.33 Titan receives somewhat less than 5W/m2 of sunlight at its surface. If all of
this energy were used to evaporate methane, about how long would it take to evaporate a lake of
methane with a depth of 1 meter?

Python Tips: The latent heat of evaporation of methane is given in phys.CH4.L vaporization.

Problem 2.1.34 This computer exercise requires that you learn how to write a function in a
programming language. It applies this skill to evaluating the Clausius-Clapeyron relation.

The simplified constant L form of the Clausius-Clapeyron relation is adequate for many
purposes. To evaluate it, you need to specify a reference temperature and vapor pressure, the
latent heat of the phase transition under consideration, and the gas constant (or equivalently the
molecular weight). Using your favorite programming language, write a function psat(T) which
computes the saturation vapor pressure as a function of temperature. The constants needed to
evaluate the function can be treated as global constants, hard-wired into the function, or added to
the argument list.
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Put in the constants appropriate to CO2 gas in equilibrium with a solid. It is convenient to
use the triple point pressure and temperature for the reference pressure and temperature. Use the
function to estimate how low temperature would have to be for CO2 to condense at the Martian
surface, assuming the 7mb surface pressure typical of the present planet.

Python Tips: Commonly, one makes a function because one wants to evaluate it many times
for the same gas but different values of T . If you add the thermodynamic constants to the argument
list, you are stuck typing in a long argument list when all you really wanted to change is T . Making
the constants into globals solves this problem, but then makes it hard to deal with saturation
vapor pressure functions for several different gases in the same program. phys provides a better
way to deal with the problem, making use of the fact that objects can be made callable. Namely,
it provides the class satvps function which takes the needed gas parameters as arguments and
creates a function-like object that stores the constants it needs. The triple point temperature and
pressure provide a convenient set of base conditions for use in the formula. Thus, to create a
constant-L saturation vapor pressure function for CO2 sublimation, one would write

gas = phys.CO2 # get the gas object you want

pCO2 = phys.satvps_function(gas.TriplePointT,

gas.TriplePointP,gas.MolecularWeight, gas.L_sublimation)

This creates a callable object pCO2, whereafter you can evaluate the vapor pressure by simply
writing pCO2(T). This a simple but very useful technique. Take a look at the class definition in
phys to see how it is done, since you may want to use the technique yourself sometime.

Actually, it’s pretty tedious to have to enter all the thermodynamic constants in the ar-
gument list. Why not just give all the constants at once in the form of a gas object? In fact,
through the power of polymorphism, the satvps function class recognizes what kind of thing it’s
given as an argument, and acts accordingly. Therefore, you could get the same result as above
using phys.satvps function(phys.CO2). By default, this will create a function that uses the latent
heat of sublimation for temperatures below the triple point, and the latent heat of vaporization
for temperatures above the triple point. But what if you want to force the function to use one
latent heat or the other regardless of temperature? For this purpose, the class allows an optional
second argument. If it’s value is the string ’ice’, the latent heat of sublimation is assumed. If it
is ’liquid’ the latent heat of vaporization is assumed.

Problem 2.1.35 Titan has a surface temperature of about 95K. Suppose that there is a lake of
liquid methane (CH4) on the surface, and that the air just above the lake is in equilibrium with
the lake, and therefore saturated with respect to methane. Use the simplified form of Clausius-
Clapeyron to determine the partial pressure of methane in the air near the surface. What would
the partial pressure be if the temperature rose to 120K? Based on an N2 partial pressure of 1.5bar

at the surface, what would the molar mixing ratio of methane in the atmosphere be? What would
the mass mixing ratio, the molar concentration and the mass specific concentration be? What
would the partial pressure and molar mixing ratio be if the temperature rose to 120K? What
would the mass mixing ratio, the molar concentration and mass specific concentration be?

Problem 2.1.36 Transition from liquid to vapor (evaporation) can happen at any temperature. It
doesn’t require a threshold temperature to be exceeded before it can happen. What then is the
”boiling point,” which certainly represents a kind of vapor-liquid transition? In fact, boiling is
not much different from evaporation. What is special about boiling is that the saturation vapor
pressure becomes greater than the total atmospheric pressure at the liquid surface. This means
that the vapor pressure can push aside fluid and form bubbles in the interior of the fluid, which
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can then escape by rising. It is a much faster process than evaporation, because the transition can
happen throughout the fluid, and not just at the gas-liquid interface.

Compute the boiling point of water at an altitude where the pressure is 300mb.

Suppose a river with a temperature of 300K erupted from the interior of present Mars, where
the surface pressure is about 7mb. Would the river boil? How high would the surface pressure have
to be to prevent boiling at this temperature?

Now, think of Glurg the Titanian, who would like to boil up liquid methane to make his
tea. The surface pressure of Titan is about 2 bars (mostly Nitrogen). How hot does his stove have
to get?

Problem 2.1.37 Water on the Hadean Earth

Ancient zircon crystals tell us that liquid water existed somewhere on the surface of the
Earth as early as 4.2 billion years ago. What does this tell us about the surface temperature?
Does it imply that the temperatures had to be below 100C (the ”boiling point”)? To answer this
question, compute the saturation partial pressure of water vapor at an ocean surface as a function of
surface temperature. Do this three ways. First, use the exponential form of the Clausius-Clapeyron
relation with constant latent heat, based on triple point data. Next, use the exponential form based
on ”boiling point” data (i.e. that the vapor pressure is 1bar at 373.15K. Finally, use the empirical
Antoine equation:

psat(T ) = 10A−B/(T+C) (2.3)

where A,B and C are empirical coefficients determined by fits to experimental data. In the range
373− 647K, the coefficients are (A, B, C) = (5.2594, 1810.94,−28.665), if the pressure is given in bars

and temperature in K. This fit gets the critical point pressure slightly wrong, but it is adequate
for the purposes of the present problem.

Using your results, answer the following. At 100C (373.15K) what is the partial pressure
of water vapor at the surface? What fraction of the molecules of the atmosphere are water at
the surface (assuming that the non-condensing part of the atmosphere has partial pressure of
1bar)? Does the ocean boil under these conditions? What if the surface temperature is 200C

instead? At this temperature, what proportion of the mass of water on the planet is in vapor form
in the atmosphere, assuming the total water mass to be the same as that of the present ocean
(1.4 · 1021kg)? How hot would the surface have to be in order for all the inventory of water to go
into the atmosphere? Specifically, show that at the critical point temperature for water, almost all
of the Earth’s oceanic inventory of water has gone into the atmosphere. Do you think that it is a
coincidence that the equivalent pressure of the Earth’s ocean is close to the critical point pressure?

Hint: At temperatures of 400K and above, it is a reasonable approximation that water vapor
dominates the mass of the atmosphere, so that by the Hydrostatic Law, the mass of water vapor
in the atmosphere can be approximated by 4πa2 · psat/g, where psat is the saturation water vapor
pressure at the surface (in Pa) and a is the radius of the Earth. Problem 2.1.54 will show you
how to accurately compute the total mass of water in cooler conditions when water vapor does not
dominate the atmosphere.

Remark: Although you will find that the existence of liquid water does not itself limit the
surface temperature to below 100C, the oxygen isotopic content of the zircons does tend to argue
for moderate surface temperatures.

Problem 2.1.38 Suppose that the latent heat of vaporization varies linearly with temperature,
according to the law L = a − bT with a and b positive, up to the temperature where latent heat
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vanishes. Use the Clausius-Clapeyron relation to find an expression for psat(T ), given its value as
some T0. Make a sketch illustrating how the saturation vapor pressure differs from the constant-L
case.

Problem 2.1.39 In this computer problem you will implement functions which provide empiri-
cal fits to the vapor pressure for water, taking into account the variations of latent heat with
temperature.

It has been found that the function satvpw(T ) defined below provides an accurate fit to the
measured vapor pressure over liquid water, for temperatures between the freezing point and 400K.

satvpw(T ) = eo · 10a+b+c+d+e (2.4)

where

a = −7.90298 · (To/T − 1), b = 5.02808 log10(To/T ),

c = −1.3816 · 10−7 · 10.11.344(1−T/To)−1,

d = 8.1328 · 10−3 · 10.−3.49149(To/T−1)−1

(2.5)

where To = 373.15K and eo = 101324.6Pa. For ice, the corresponding function satvpi(T ) has the
same form but with To = 273.15K, eo = 610.71Pa,

a = −9.09718(To/T − 1), b = −3.56654 log10(To/T ), c = 0.876793(1− T/To) (2.6)

and d = 0. The fit for ice is valid from the freezing point down to about 100K.

As it turns out, there’s a further complication: in real atmospheres, liquid water can exist
in a supercooled state well below the triple point temperature. Typically, the mix of supercooled
water and ice shifts from all water to all ice as the temperature is reduced below the triple point.
The following function (taken from a typical climate model) uses the empirical function for ice for
temperatures below -20C, the empirical function for liquid for temperatures above 0C, and shades
linearly between ice and water saturation as temperature is increased from -20C to 0C, specifically:

satvpg(T ) = 0.05(273.15− T ) ∗ satvpi(T ) + 0.05(T − 253.15) ∗ satvpw(T ) (2.7)

where satvpi and satvpw are the vapor pressures over ice and liquid water,defined previously.

Write functions to compute satvpw(T ), satvpi(T ) and satvpg(T ). Compare satvpw(T ) with
the idealized saturation vapor pressure function for water based on a constant latent heat of
vaporization, using the triple point temperature and pressure as the base values. Can you see the
difference between the two when you plot them both with a logarithmic pressure axis? To get
a more accurate view of the error, compute a table of (satvp1(T ) − satvpw(T ))/satvpw(T ), where
satvp1 is the idealized function. Try using the boiling point pressure and temperature (1bar at
373.15K) as the reference value for satvp1 and see how the comparison differs.

Compare the empirical and idealized vapor pressures for ice in the range 150K to 273K.

Compare satvpw(T ) with a simplified function consisting of the constant L function for ice
below the triple point and the constant L function for liquid water above the triple point. In
the simplified function, you should use the triple point temperature and pressure to provide the
reference value. Do the comparison for the range 250K to 290K.

Python Tips: The functions described above are provided for you as phys.satvpw,phys.satvpi
and phys.satvpg
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Problem 2.1.40 Suppose that you are given a function e(T ) which gives the saturation vapor
pressure of a substance as a function of temperature, and you need to find the latent heat of the
phase transition, as a function of T . This situation might arise if the vapor pressure function you
are using arises from an empirical fit to data. This is the case for the function satvpg(T ) in Problem
2.1.39.

Use the Clausius-Clapeyron relation to derive a formula for L in terms of d ln e/dT . You can
approximate the derivative using the formula

d ln e

dT
≈ ln e(T + dT )− ln e(T − dT )

2dT
(2.8)

where dT is some suitably small number. Writing the derivative function this way allows you to pass
any saturation vapor pressure function to the procedure, and get an answer without recoding. Now
write a function using the approximate derivative which returns the latent heat for any argument
T . It’s a good idea to make dT an argument of the function, so that you can try out different
values easily. Note that in most computer languages the function name e can also be passed to
your latent heat function as an argument. If you do this, you can use your latent heat function
for several different choices of e(T ) without recoding. The function needs the gas constant R for
the material in question. You could add the gas constant to the argument list of the function,
but it makes more sense to leave it as a global to be set in your main program before you use the
function.

First, check your latent heat function by passing it a saturation vapor pressure function
made using the constant L approximation, and make sure that you get the right value of latent
heat back. What happens if you make dT too small? If you make it too large?

Now apply your procedure to satvpg. Plot the results in the range from 200K to 400K, and
discuss. Compare the computed latent heat with the computed latent heats for satvpw and satvpi.
Why do you think the effective latent heat for satvpg has a spike near -20C?

Problem 2.1.41 Apply the function you wrote in Problem 2.1.40 to determine the implied latent
heat as a function of temperature in the Antoine vapor pressure formula used in Problem 2.1.37.

Problem 2.1.42 This problem is inspired by Fritz Leiber’s story, ”A Pail of Air.” The Earth has
a close encounter with a large interplanetary object, and is flung off into the cold night of space
far from the Sun. As the Earth gradually cools down the atmosphere begins to condense, until
essentially all of the atmosphere is deposited in a condensed layer at the surface of the planet. For
the purposes of this problem, you may assume that dry Earth air consists of a mixture of 80%
N2 and just under 20 % O2 (by mole fraction), with the balance consisting of CO2 with a mole
fraction of 380ppmv. To keep things simple, we’ll ignore atmospheric water vapor, which would
quickly snow out and add to the existing surface layer of water ice and snow. The Earth’s initial
surface pressure is 105Pa, and the acceleration of gravity is 9.8m/s2.

Describe the sequence of events that occurs as the atmosphere cools. Will the atmosphere
condense into solid or liquid forms? Will all the components of the atmosphere be mixed together
at the surface, or will they occur in layers? Why? How thick would the layer of each substance
be, and in what order would the layers occur? For the purposes of this problem, you may assume
that any snow (of any substance) that forms becomes so compacted that the density is the same
as that of the pure solid.

Problem 2.1.43 Water content of Earth’s atmosphere
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Consider an atmosphere with the temperature profile:

T (p) =

(
Ts · ( p

ps
)a for p > pt,

Ts · ( pt
ps

)a otherwise.
(2.9)

This provides an adequate model of the tropical temperature profile with pt = 100mb and a =

.176. Find the profile of the saturation specific humidity for water,qs, associated with this profile.
What happens in the isothermal stratosphere if you insist that the water vapor remain saturated?
Suppose now that there is no water in the stratosphere (p > pt). From the definition of specific
humidity, the total mass of water per square meter in a column of the atmosphere is then:

mw =

Z pt

ps

qs
dp

g
(2.10)

Compute this integral approximately, by dividing the column up into many thin layers and summing
the water in each. Discuss the dependence on surface temperature. The liquid equivalent depth is
the depth of the layer of liquid water that would be produced if all the vapor were condensed out
of the column and spread uniformly over its base. It is mw/ρliq, where ρliq is the density of liquid
water (about 1000 kg/m3). What is the equivalent liquid depth of water in a saturated tropical
atmosphere?

Problem 2.1.44 Examine some of the polar winter soundings from the Mars Global Surveyor
Radio Occultation dataset introduced in Problem 2.1.23, and discuss whether there are any parts
of the atmosphere where condensation of CO2 into CO2 ice is likely to have occurred. To do this,
you need to use the Clausius-Clapeyron relation to compute the saturation vapor pressure at each
level in the sounding, using the temperature data, and then compare the saturation pressure with
the actual pressure. Alternately, you can solve the simplified Clausius-Clapeyron formula for T (p)

and compare this directly with the temperature sounding.

Problem 2.1.45 According to some interpretations of geologic data from the Neoproterozoic (about
600 million years ago), the Earth went through one or more episodes of global glaciation. The phe-
nomenon is known as ”Snowball Earth.” The general thinking has it that the Earth would exit
from a Snowball state after sufficient CO2 has built up in the atmosphere to warm the planet to
the point where it deglaciates.

In the Snowball state, the planet becomes very cold, because an ice surface reflects a great
deal of solar radiation. Simulations show that the surface temperature at the Winter pole can drop
to 160K, though it warms to about 240K in the balmy polar summer. Under these circumstances,
how high would the CO2 partial pressure have to rise before CO2 condensation sets in at the winter
polar surface? Based on a 1 bar surface pressure for the non-CO2 part of the air what would the
molar mixing ratio and molar concentration of CO2 have to be to cause condensation? How do your
answers change if the surface temperature is increased to 200K? What do you think condensation
would do to the global CO2 concentration?

2.1.6 Moist Adiabats

Problem 2.1.46 Springtime for Europa

Something is about to happen. Something wonderful. To promote life on Jupiter’s moon
Europa, which currently is composed of a liquid water ocean covered by a very thick water ice crust,
the alien race which built Tycho Magnetic Anomaly 1 ignites thermonuclear fusion on Jupiter,
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heating Europa to the point that its icy crust melts, leaving it with a globally ocean covered
surface having a temperature of 280K. Water vapor is the only source of atmosphere for this
planet. Describe what the atmosphere would be like, and calculate T (p) for this atmosphere. Give
a rough estimate of the depth (in km) of the layer containing most of the mass of the atmosphere.
(The gravitational acceleration at Europa’s surface is 1.3m/s2).

Problem 2.1.47 Martian polar winter temperature structure

During the winter near each of the Martian poles, CO2 condenses out from the atmosphere
to form a layer of CO2 snow which accumulates at the surface. As springtime approaches, this
snow layer sublimates into the atmosphere until it is completely gone, leaving only the underlying
water ice behind. What is the surface pressure when the surface temperature is 145K, 150K,
151K and 152K, assuming that some CO2 ice remains at the surface in these conditions? Plot the
temperature profile T (p) you expect for these cases, and justify your reasoning. In each case, show
results for p ranging down to 1

1000
of the surface pressure. Do you think any CO2 snow is likely to

be left at the surface of Mars when the polar temperature reaches 160K?

For the purposes of this problem, you may assume that Mars has a pure CO2 atmosphere.

Hint: To make it easier to compare the profiles, you may want to use − ln(p/ps) as your
vertical coordinate.

Problem 2.1.48 Consider a planet with a methane-ammonia atmosphere, both of which are as-
sumed in saturation so that lifting will case both methane and ammonia to condense. Make a table
and plot of the temperature vs. pressure for this atmosphere, and of the mixing ratio of methane
to ammonia as a function of pressure.

Hint: The partial pressures of the two individual components are given simply by their
respective Clausius-Clapeyron relations. How do you then get the total pressure from the partial
pressures? Note that finding an expression for T (p) is difficult, but computing p(T ) is easy. You
can use the later to make graphs and tables just as easily as the former.

Problem 2.1.49 Using the formula for the slope of the saturated moist adiabat for a condens-
able/noncondensable mixture, compute d ln(T )/d ln(pa) for a mixture of water vapor and Earth air
at a pressure of 1000mb and (a) a temperature of 300K, (b) a temperature of 250K. List the values
of the individual terms in the numerator and denominator, so that you can get a feel for which are
big and which are small. Compare the values with the slope of the dry adiabat. Note that pa ≈ p

in this temperature range, which simplifies the calculation.

Problem 2.1.50 Consider an atmosphere on the saturated one-component moist adiabat Tad(p)

given by Eq. ??. Suppose that a parcel of atmosphere is lifted from a pressure p to a slightly lower
pressure p− δp (with δp ¿0). Suppose that the parcel is lifted without condensation, i.e. along the
dry adiabat. By comparing the resulting temperature with Tad(p − δp), show that condensation
occurs on ascent provided the slope d ln Tad/d ln p is less than the dry adiabatic slope R/cp. Using
Clausius-Clapeyron to compute the moist adiabatic slope, show that this criterion is equivalent to
cpT/L < 1. Show that if the criterion is not satisfied, then condensation occurs on descent instead.

Another way to state the criterion is to define the characteristic temperature L/cp, and to
say that condensation occurs on ascent when T is below the critical temperature. Compute L/cp

for CO2, H2O, N2, CH4 and NH3, using both the latent heat of sublimation and the latent heat
of vaporization in each case. For the purposes of this problem you may use the latent heats and
specific heats given in Table ??. Show that in each of these cases the criterion for condensation on
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ascent is automatically satisfied as long as the temperature is below the critical point temperature.
Note that to determine what happens as the critical point is approached, one must use a more
general form of Clausius-Clapeyron and take into account the temperature variations of L and cp,
as well as the departures from the ideal gas equation of state.

Problem 2.1.51 In this problem you will compare the moist adiabatic slope with the dry adiabatic
slope for an arbitrary mixture of a saturated condensable gas with a noncondensable gas. Though
the calculation can be done manually, it is much easier to write a small program to carry out the
procedure outlined below, given temperature and gas properties as input. For the purposes of this
problem you may assume the latent heat to be independent of temperature.

Divide up the problem as follows. First, using the saturation vapor pressure, compute
R/cp for the mixture using the appropriately weighted gas constants and specific heats for the
two components. This is the dry adiabatic slope. Next, using Eq. ??, compute d ln T/d ln pa.
Finally, to convert this to d ln T/d ln p you need to multiply by d ln pa/d ln p, which is equal to
(p/pa)(dpa/dp). Compute this quantity by noting p = pa + pc, d(pa + pc)/dpa = 1 + dpc/dpa, and
dpc/dpa = (dpc/dT )/(dT/dpa) You can directly evaluate (dpc/dT ) using Clausius-Clapeyron, since
the condensable substance is assumed saturated. You can evaluate (dT/dpa) using the value of
d ln T/d ln pa which you computed already.

Carrying out this procedure allows you to evaluate the moist adiabatic slope with a minimum
of tedious algebra. For a range of temperatures extending from temperatures where the condensable
is dilute to temperatures where the condensable is dominant, compare the moist adiabatic slope
to the dry adiabatic slope for each of the following mixtures: (1) Condensable H2O in N2, (2)
Condensable H2O in H2, (3) Condensable CH4 in H2, (4) Condensable CO2 in N2, (5) Condensable
CH4 in N2.

Problem 2.1.52 Numerical computation of dilute moist adiabat

For the dilute case, in which the mixing ratio of the condensable substance is small, the
slope of the moist adiabat is given approximately by d ln T/d ln p = (Ra/cp,a)(1 + A)/(1 + A · B),
where A ≡ Lqsat/RaT and B ≡ (Ra/cp,a)(L/RcT ). qsat is the saturation mass concentration of the
condensable substance, which is approximately the same as the saturation mass mixing ratio in
the dilute case. What approximations do you have to make in order to recover this formula from
the full nondilute formula given in the text? (Hint: Lq/RT can be large even if q itself is small).

Note that both A and B can be written as functions of ln T and ln p, so if you define y to be
the former and x to be the latter, we have a differential equation of the form dy/dx = F (x, y). Write
a computer program that solves this differential equation using the Euler and Midpoint methods.
(Optionally, you may want to try Runge-Kutta). Show solutions for the case of water vapor in
Earth air, with surface temperature set to 250K, 300K and 320K. Compare with the dry adiabat.
Examine the values of q in your solutions and comment on the validity of the dilute approximation.
Try this out for some other combination of gases (e.g. CH4 in N2 with surface pressures of around
1.5bar and temperatures of 80K to 100K, approximating Titan conditions).

You may assume that L is independent of T , with the exception that you should use the
latent heat for gas to liquid or gas to solid according to whether the temperature is above or below
the freezing point. Do your results change much if you implement this refinement in the case of
water vapor?

In this problem you should not use any canned numerical analysis package; you should cook
up your own from scratch.
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Problem 2.1.53 Computing the Moist Adiabat

In this computer problem you will numerically integrate the equation determining the moist
adiabat for a mixture of a noncondensable and condensable component, use your routine to repro-
duce Figure ?? in the text, and then go on to further explorations. Besides basic programming
skills, you will need to know how to find numerical solutions to an ODE on the computer.

In Problem 2.1.49 you already wrote a function which computes the slope d ln T/d ln pa in
terms of arguments ln T and ln pa and the thermodynamic constants. For generality, you should
allow for an arbitrary choice of noncondensable and condensable substances, rather than hard-
wiring in the thermodynamic constants. You should assume that L is constant. Test out your
slope function in some critical limits to make sure it is behaving properly.

Using the slope function, write a program to determine the moist adiabat for the general
non-dilute case, using ODE integration. Recall that, as described in the text, you find the profile
T (p) using a two-step process: first you compute T (pa) by using an ODE integrator, then you
use the result to compute the total pressure from the formula p = pa + pc,sat(T (pa)). Using this
procedure, you essentially make a list of values T (pa) and the corresponding p(pa), which can then
be plotted or analyzed. Verify that this procedure automatically reduces to the one-component
moist adiabat for hot conditions where pa � pc,sat(T ).

Now, use your system to reproduce the graph of the moist adiabat given in the text (Figure
??). Extend the results to higher temperature, and compare with what you would have gotten
with a pure steam atmosphere.

Python Tips: The integration to find the moist adiabat is implemented in the Chapter Script
MoistAdiabat.py. It makes use of gas objects to allow for generality in the choice of condensable
and noncondensable components. The same computation is implemented as a callable object
MoistAdiabatComp in the phys courseware module. The object implementation allows interpolation
to a fixed pressure grid, which makes intercomparison of calculations for different parameters
easier, and also facilitates comparison with data. You should try to implement the moist adiabat
computation yourself before taking a look at the courseware implementations.

Problem 2.1.54 Consider an atmosphere consisting of a saturated mixture of condensable water
vapor with noncondensable Earth air. The way we have been setting up the calculation, the partial
pressure of noncondensable air, pa is specified at the ground, and the total pressure p (including
water vapor) is computed. From the hydrostatic relation, the total mass of the atmosphere per
square meter is p/g, but the mass of air is not pa/g and the mass of water is not pw/g because
water vapor is not well-mixed, i.e. pw/(pw + pa) is not constant.

Write a function to compute the total mass of water vapor and of air in Earth’s atmosphere
as a function of pa at the surface and the surface temperature. Explore the behavior with pa fixed
at 1bar, as the temperature ranges from 270K to 400K. How much does the mass of noncondensing
air vary with surface temperature? Why does it vary? Compare the mass of air with pa/g, and give
an argument explaining the sign of the discrepancy. How does the mass of water in the atmosphere
compare with the estimate provided by pw/g, which is accurate when water vapor dominates the
atmosphere?

Hint: If q(p) is the mass concentration of a substance, then the mass of the substance per unit
area is

R 0

ps
q(p)dp/g. The integral can be approximated by a sum over layers. In order to compute

q(p) from saturation vapor pressure, you will need to make use of the numerical evaluation of the
moist adiabat T (p) which you carried out in one or more of the previous problems.
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Python Tips: You can do this problem by modifying the chapter script MoistAdiabat.py, or
by using the phys.MoistAdiabat class to make a function to compute the moist adiabat and mass
concentration, then summing up the output.

Problem 2.1.55 Comparison of tropical Earth soundings with the moist adiabat

Pick a few tropical Earth soundings from the data sets analyzed in Problem 2.1.21. and see
how well they match the moist adiabat starting at some pressure p1 off the ground. You will need
to experiment a bit to find the best value of p1; loosely speaking, it corresponds to a boundary layer
height, or in some cases a lifted condensation level. At what pressure level do the sounding start
to become warmer than the moist adiabat? This level provides an estimate of the level reached by
convection. The convection level, estimated in this way, will always be below the level at which the
temperature minimum occurs. Compare the pressures of the two levels in a few soundings selected
from the tropical dataset.

Look at the relative humidity data in the soundings. Do the observations follow the moist
adiabat even when the atmosphere is substantially undersaturated? The soundings on March
24, 25,26,27, which were taken in the subtropics, provide a particularly clear indication of this
behavior.

Finally, examine some midlatitude soundings from the data sets analyzed in Problem 2.1.22.
Where is the temperature minimum? How well can you fit the data below the temperature mini-
mum with a moist adiabat?

Problem 2.1.56 Moist adiabat on Titan

The atmosphere of Titan consists of a mixture of N2 and CH4 (Methane). The methane
is condensable at Titan temperatures but for the purposes of this problem the nitrogen can be
regarded as non-condensable. (In reality, it does condense a little bit in Titan’s upper troposphere).
Assume that there is sufficient methane ice or liquid at the surface to maintain methane saturation.

Compute and plot the moist adiabatic T (p) for Titan assuming 1.5bar of N2 at the ground.
You may also assume that methane is saturated throughout the atmosphere (requiring a reservoir
of methane at the ground). Plot and discuss results for the mixing ratio as a function of p as well.
Discuss results for three different cases: (a) T = 95K at the surface, as for Titan at present, (b) a
hot Titan, with T = 120.K, and (c) a cold titan, with T = 80K Discuss how the adiabat compares
with the dry adiabat and the single-component methane condensing adiabat.

Compare the lower portion of the Huygens Titan sounding to the dry N2 adiabat and to
the saturated moist adiabat based on the observed low level temperature and pressure. Which
adiabat provides the better fit to the data? How accurate must the temperature measurement be
to distinguish the two? (The data you need is in the Titan subdirectory of the Workbook datasets
for this chapter.)

Python Tips: You can modify the chapter script MoistAdiabat.py for use with a mixture as
defined above. Gas data for for N2 and CH4 are both in the phys module, under the names N2 and
CH4. Alternately you can use the MoistAdiabat object in the phys module.

Problem 2.1.57 Find the moist adiabat for a mixture of 1bar of N2 (measured by surface pressure)
with CO2 in saturation, in the surface temperature range 200K to 300K. How does the surface
pressure depend on temperature?
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Problem 2.1.58 As a challenging variant of Problem 2.1.57, consider the case where there are
2bars partial pressure of CO2 at the surface, 1 bar of N2 and where the surface temperature is
warm enough that the CO2 is unsaturated at low levels. Find the lifted condensation level, and
patch the result at this level to the numerically determined moist adiabat further aloft. This is
considered by many to be a model of the atmosphere of Early Mars.

Problem 2.1.59 Moist adiabat on gas giants

The atmospheres of the gas giants are mostly H2, mixed with small quantities of various
condensable substances. Explore the behavior of the moist adiabat for H2 mixed with each of the
following condensables taken one at a time: H2O, CH4, NH3. For what range of temperatures
and pressures does each of these substances appreciably alter the dry H2 adiabat? For each case,
restrict attention to the regime in which the molar concentration of the condensable remains under
10% .

For more accuracy, you should take into account that the noncondensing part of gas giant
atmospheres is actually a mixture of H2 and He, just as present Earth air is mostly a mixture of
N2 and O2. For Jupiter, He makes up about 10% of the noncondensable total, whereas for Saturn
it is about 3%. What do you need to modify in your calculation in order to incorporate the effect
of He? Discuss how much difference this makes in the CH4 case.
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3.1 Workbook

Python tips: The phys module contains Planck’s constant (phys.h), the speed of light (phys.c)
and the Planck function (invoked as phys.B(nu,T)).

3.1.1 Basic concepts

Problem 3.1.1 A comet hits the Earth with a speed of 15km/s. What mass does the comet have
to have in order for the energy delivered by the impact to equal the solar energy received by the
Earth in one day? (Assume the albeo is 30%). If the comet has the same density as water, what
would its radius be?

Problem 3.1.2 With the present solar luminosity, the Earth absorbs solar energy at a rate of about
240W/m2, averaged over the planet’s surface. Suppose that the Earth had no way of losing energy.
Assuming the absorbed energy to be uniformly distributed over the entire mass of the planet, how
much would the Earth heat up after one million years? After one billion years? For the purposes
of this problem, you may assume the Earth to have a mean specific heat of 840 J/kgK, which is
the value for basalt rock at surface pressure. The mass of the Earth is 6 · 1024kg.

Problem 3.1.3 Estimate how bright it would look in the daytime on the surface of Neptune’s
moon Triton. Do this by comparing the flux received from the Sun at Triton with the illumination
provided by a candle carried into a dark room. A candle puts out about 1 W of visible light.
Assume the candle light bounces off a light-colored wall at a distance of d meters, and compute
the flux from the candle which hits the wall. How far would the wall have to be in order to look
about as bright as the surface of Triton?

Problem 3.1.4 The V-filter used by astronomers corresponds to the peak sensitivity of human
vision. It has a central wavelength of 0.55 µm and a bandwidth of about 0.1 µm. If the flux
density in wavenumber space passing through this band is measured in W/(m2cm−1) then the
constant C used in defining zero magnitude for this band is -29.836 . (See Problem 1.1.14 for the
definition of magnitude). Note than when defining filtered magnitudes, flux density is used in the
formula rather than flux itself. This makes the definition less sensitive to the filter bandwidth.

A telescope with a collector area of 1 m2 observes a star with apparent V-magnitude MV .
Make a table showing how many V-band photons strike the collector per second, for MV = 0, ..., 20.

Hint: Make sure to convert to frequency in Hz when using Planck’s constant, and to convert
the bandwidth to units compatible with the flux density. This problem involves a mishmash of
different units, but that’s just like real life; at least you have been spared learning what a Jansky

is.

Problem 3.1.5 In the text we derived the 1/r2 law for solar radiation by dividing the net power
output of a star by the area of a sphere of radius r with the star at its center. In this problem,
you will rederive the same result by summing up the blackbody radiation coming from each patch
of the star’s visible surface, making use of the angular distribution of blackbody radiation. This
problem tests your understanding of the Planck density and the way the angular distribution is
represented. It also provides a way to compute the solar constant in cases where the brightness is
not uniform across the star’s surface.

Consider an observer at a distance r � r~. You need to compute the power incident on
a small flat patch P with area dA, oriented perpendicular to the line joining the observer to the
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center of the star. Each patch P~ of the visible surface of the star, having area dA~, contributes
a flux (per unit frequency) B(ν, T~)dA~dΩ cos θ to the net flux going through P . In this formula,
dΩ is the (small) solid angle made up by the set of rays from P~ which go through P , and θ is the
angle between the normal to the star’s surface at P~ and the line joining the center of P~ to the
center of P . Complete the derivation by responding to the following:

• Why do we need the factor cos θ?

• Find an expression for dΩ in terms of dA and r.

• Find an expression for cos θ in terms of the position on the star’s surface.

• Integrate BdΩ cos θ with respect to dA~ over the visible surface of the star. Note that since
r � r~, the visible surface (i.e. the part of the surface from which some rays pass through
the patch P ) is approximately a hemisphere.

If you did everything properly, you should obtain the same answer as we got using the previous
method, namely πBr2

~/r2.

3.1.2 The Planck Function

Problem 3.1.6 Consider a patch of the photosphere of the Sun with an area of 10 m2. The patch
is small enough that it can be considered flat. Assume that the temperature of the photosphere is
6000K and that it radiates like an ideal blackbody. Now consider all the light with wavenumbers
between 10000 and 10100 cm−1, which leaves the patch in directions making angles between 45
degrees and 50 degrees with the normal to the patch. How much power (in W ) is contained in the
light meeting these requirements? What is the rate (in W ) at which energy is carried through the
patch by such light? For the purposes of this problem, you may assume the Planck function to be
constant within the specified wavenumber band.

Problem 3.1.7 What is the total power radiated by a blackbody sphere of radius 1m having
uniform temperature 300K, in the wavenumber range between 500cm−1 and 750cm−1. You may
assume the Planck density to be approximately constant over this range. Compare this to the total
power radiated over all wavenumbers. Note: Blackbody radiation is emitted with equal intensity
in all directions, so you must remember to take this into account in computing the total energy
flux coming from the surface.

Problem 3.1.8 Compute the wavenumber of maximum emission of an object with temperature
200K. What is the rate of energy emission from each square meter of the object’s surface, in the
wavenumber band extending 50cm−1 on either side of the maximum? You may assume for the
purposes of this calculation that the Planck function is constant over this range of wavenumbers.
How good is this assumption?

Problem 3.1.9 Write down the Planck density corresponding to the case in which position in the
electromagnetic spectrum is measured by ln λ, where λ is the wavelength. Estimate the value of
u = hν/(kT ) for which this density has its peak. (You will probably need to do a small numerical
calcuation to do this). How does your result change if you use the log of the wavenumber or
frequency as the coordinate instead?



42 CHAPTER 3. ELEMENTARY RADIATION BALANCE PROBLEMS

Problem 3.1.10 Color index and stellar temperature

Suppose we observe the flux density from a star at two different frequencies ν1 and ν2, with
ν2 > ν1. Let the measured flux densities be F1 and F2. Suppose further that the star radiates
like an ideal blackbody with temperature T~. The two flux densities will then be proportional to
the Planck function at the corresponding frequencies, multiplied by the inverse-square attenuation
of the starlight. Write the flux densities as astronomical magnitudes using Mj = Cj − 2.5 log10 Fj ,
where Cj the constant defining zero magnitude for each band. Show that M2 −M1 is independent
of the distance from the star. This difference is called a color index. Plot the color index as
a function of T~ for ν2 corresponding to the astronomer’s blue (”B”) band at 0.44µm and ν1

corresponding to the visual (”V”) band at 0.55µm, and show that the magnitude difference is a
monotonically decreasing function of temperature. Find analytic expressions in the low-frequency
and high frequency limit, and use these to get an approximate expression for T~ as a function of
the color index. Given an observation of the color index alone, how would you know which, if any,
of these two approximations is applicable? Hint: In the low frequency case you will need to retain
one term beyond the lowest order expansion in frequency in order to get a dependence of the color
index on T~.

Astronomers define color indices for specific standard filter bands. The B-V color index
is very commonly reported as a proxy for the temperature of an object. Various empirical fits
are available, which take into account the actual standard filter characteristics. For example, for
temperatures between 3000K and 9000K, the empirical relation is MB−MV = −3.684 log10 T +14.551.
Compare this fit to the results you got in your calculation above, which in essence assume infinitely
narrow filters. In making this comparison, choose C1−C2 so that the agreement is exact at 6000K.

Problem 3.1.11 Bolometric Correction

Problem 1.1.14 introduced the concept of bolometric magnitude. Earth based astronomers
rarely measure the bolometric magnitude directly, because the atmosphere absorbs much of the
spectrum and it is hard to take accurate all-wave flux measurements. Direct measurement of
bolometric magnitude is becoming more common with the advent of space-based telescopes, but
it is still common for astronomers to report V-magnitudes and add a temperature-dependent
correction to convert to bolometric magnitudes assuming a blackbody spectrum. This term is
called the bolometric correction, denoted by BC

Suppose that the observed flux density near frequency νo is Fo. Compute the total flux
Ftot integrated over all wavenumbers, assuming that the spectrum is proportional to a Planck
spectrum with temperature T~. Show that for any given νo, Ftot/Fo depends only on T~. Using the
definition of magnitude, this ratio is converted to a bolometric correction using BC = Cbol − Co −
2.5 log10(Ftot/Fo), where Cbol and Co are the constants used to define the zero-magnitude point for
the bolometric and filtered fluxes, respectively. For V-magnitudes this difference is about 10.86.
Plot the bolometric correction as a function of T~, for νo corresponding to the V-band at 0.55 µm.

The following empirical fit gives the bolometric correction taking into account the actual
filter characteristics of the standard V-filter:

BC = −8.499x4 + 13.421x3 − 8.131x2 − 3.901x− 0.438, x ≡ log10 T~ − 4 (3.1)

Compare this with the narrow-filter calculation you did above.

Problem 3.1.12 Show that if both ν1 and ν2 are in the frequency range where hν/kT � 1, then
the total flux per steradian emitted between ν1 and ν2 is 2

3
(kT/c2)(ν3

2 − ν3
1 ).
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Problem 3.1.13 Microwave brightness of Venus

The thick CO2 atmosphere of Venus is nearly opaque in the infrared, so observations of
Venus in the infrared spectrum provide no direct information about the temperature of the ground.
However, the atmosphere is nearly transparent to microwave radiation, so the microwave emission
of the planet can be used to infer its surface temperature. Indeed, this is how it was inferred in the
1960’s that the surface of the planet was hotter than a pizza oven, rather than the steamy jungle
world earlier science fiction authors had envisioned.

Assuming the ground to radiate like a blackbody in the microwave, compute the net power
(in W ) radiated by Venus in the wavelength band from 1 millimeter to 100 millimeters, if the surface
temperature is uniform at 737K. What would the radiated power be if the surface temperature
were 300K instead? Hint: You can use the result from Problem 3.1.12. Why is this valid?

At its closest approach, Venus is about 41 million km distant from Earth. Using the 1/r2 law,
what microwave energy flux (in W/m2) would be seen from Earth orbit by a microwave antenna
directed toward Venus? How much microwave power would be collected by an antenna with area
100m2?

Problem 3.1.14 Compute the total power radiated by a person with a normal body temperature
of 37C. Why is this so much greater than the typical daily energy consumed by a person in the
form of food (equivalent to about 100W )? Next, compute the power radiated by the person in the
visible wavelength band (about .5 to 1 microns). Approximately how many visible light photons
per second are radiated? About how long would you have to wait before the person emitted a
single ultraviolet photon (about .1 micron wavelength)?

For the purposes of estimating the surface area needed in this problem, you may assume
that the person is shaped approximately like a rectangular prism, with height 1.5m, width .5m and
depth .25m.

Problem 3.1.15 Derive an approximate form of the cumulative blackbody emission spectrum,
valid for large values of hν/(kT ). Hint: Write the cumulative spectrum as σT 4 − I1(hν/(kT )), and
use the fact that the dominant contribution to the integral I1 comes from the vicinity of the lower
limit of integration, hν/(kT ).

Problem 3.1.16 Estimate the total power radiated by the Earth at wavelengths equal to or shorter
than visible light (about 5 microns. For the purposes of this problem, assume that the Earth has
a uniform radiating temperature of 255K.

Problem 3.1.17 In the text we needed to evaluate the integral
R∞
0

(u3/(eu − 1))du in order to
determine the Stefan-Boltzmann constant. Using a Taylor series expansion of the integrand, show
that the integral is equal to 6ζ(4), where

ζ(n) =

∞X
j=1

1

jn
(3.2)

Hint: Multiply the numerator and denominator of the integrand by e−u and then Taylor expand in
e−u. Equivalently, the expansion can be done as the geometric series 1 + a + a2 + ... where a = e−u.
Note that the series is convergent for all u > 0 because e−u < 1
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3.1.3 Basic Energy Balance

Problem 3.1.18 You are designing a spherical planet to be placed at the orbit of Mercury. The
planet will have a nitrogen atmosphere that has no effect on the infrared radiated by the planet,
but which is dense enough and mixes heat rapidly enough that the entire planetary surface is
isothermal. What albedo should the planet have in order for its surface temperature to be a
comfortable 300K?

Problem 3.1.19 A cylindrical space station with length h and radius r is in an orbit about the
Sun at a distance where the solar constant is L~. The space station has zero albedo in the visible
range and radiates as a perfect blackbody. The flow of air inside keeps the entire station at the
same temperature, and the skin is a good conductor of heat, so that its temperature is the same
as that of the interior. The orientation of the station is such that the axis of the cylinder is
always perpendicular to the line joining the center of the station to the center of the Sun. Find
an expression for the temperature of the station. Put in numbers corresponding to the mean Solar
constant at Earth’s orbit, assuming r = h.

Now suppose that the equipment in the interior of the space station consumes 1 megawatt of
solar-generated electrical power, which is dissipated as heat. How much warmer would this make
the station once the equipment was turned on? To get rid of this excessive heat, you are to design
a radiator, which is a large, thin flat plate heated by pumped water from the space station so that
its temperature is the same as the interior of the space station. The radiator is perfectly reflective
in the visible range, but acts as a perfect blackbody in the infrared range. How large should the
radiator plate be in order to get rid of the excess heat? For the purposes of this part of the problem
you may assume r = h = 50m.

Problem 3.1.20 Compute the equilibrium temperature at the subsolar point of Europa, which is
in orbit around Jupiter and therefore has the same solar constant as that planet. The greenhouse
effect of Europa’s tenuous atmosphere can be neglected. For the purposes of this problem, you
may assume that the albedo of Europa is .67 . Assuming Europa to have a water-ice surface,
what would be the saturation vapor pressure of the water vapor atmosphere immediately above
the subsolar point? Suppose that there is some methane, carbon dioxide and ammonia mixed in
with the ice. What would be the partial pressures of these gases?

Problem 3.1.21 Consider a planet covered in water ice with a uniform albedo of .7 . The planet
is tide-locked, so that the same face always points to the Sun; the other side is in perpetual night.
The atmosphere has negligable greenhouse effect. Compute the solar constant needed to begin
melting the ice under the following three alternate scenarios: (a) The atmosphere is so efficient
at transporting heat that the entire surface of the planet (dayside and nightside) has the same
temperature, (b) The atmosphere is only moderately efficient, so that the dayside temperature is
uniform but essentially no energy is carried away to the nightside, (c) There is no atmosphere, so
that each bit of the planet’s surface is in equilibrium with the solar radiation it absorbs.

Problem 3.1.22 The physicist Freeman Dyson has speculated that an advanced civilizations might
enclose its star within a spherical shell of material,and live on the inner surface. This gives them
more living space, and avoids wasting all that starlight that would ordinarily escape to space.
Consider a red dwarf star with photospheric temperature 4000K and radius 200,000km. What
should the radius of the Dyson sphere be in order to have an inner-surface temperature of 300K?
Assume that the sphere material is a perfect blackbody with zero albedo at all wavelengths, and
that it is a good conductor of heat so that the inner surface and outer surface temperature are
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identical. You may also assume that the temperature of the photosphere remains unchanged after
the Dyson sphere is built. If you were an astronomer looking for such a Dyson sphere, in what
part of the electromagnetic spectrum should you look? What radius should the Dyson sphere have
if it is instead made of a good thermal insulator, so that the outer surface is much, much colder
than the inner surface?

Challenge question: In either case, is it actually reasonable to assume the photosphere tem-
perature stays unchanged? If you think it should change, what value should it take on assuming:
(a) the fusion energy output of the star remains unchanged, and (b) the radius of the Dyson sphere
is adjusted so that the inner temperature is 300K as before.

Problem 3.1.23 The discovery of a planetary system orbiting the red-dwarf star Gliese 581 was
announced in 2007. This system is of particular interest, because two of the planets (581c and
581d) have masses just a few times that of Earth, and so are presumably solid (ice or rocky) bodies
rather than gas giants. The star has a luminosity .013 times that of the Earth’s Sun. Gliese 581c
orbits at a mere .073 A.U. (Astronomical Units) from its star, and 581d orbits at .25 A.U. The
temperature of the photosphere of Gliese 581 is 3480K.

Compute the equilibrium temperatures of these two planets, assuming that they are isother-
mal spherical bodies with an albedo of .3 , and assuming that the atmosphere has no greenhouse
effect. What is the gap between the median-emission wavenumber of the star and that of each of
the planets? Compare this to the situation of Mercury in our own solar system. Based on the data
given, estimate the radius of the star in the Gliese system.

Problem 3.1.24 Freeze-out time of magma ocean

This problem is an idealization of the calculation of the freeze-out time of a magma ocean
such as might have occurred on Earth following the moon-forming impact. Earthlike magma
freezes at 2036K at near-surface pressures. We’ll assume the entire planet is liquid and convecting
vigorously, and that the entire planet is isothermal at this temperature until enough energy has
been removed to freeze the whole planet solid. The latent heat required to freeze the magma is on
the order of 3 · 105J/kg. Under these assumptions, compute the time needed for the magma ocean
to freeze, assuming the radius of the planet to be a, the density to be ρ and the atmosphere to be
transparent to infrared. The latter assumption implies that the planet radiates at a rate of σT 4

per unit surface area, where T is the surface temperature (held constant at the melting point).
Estimate the time, in years, for this to happen on the Earth, assuming a density of 5500kg/m3,
and verify the statement in Chapter ?? that this is a matter of a few hundred years. In doing
this calculation, does it matter much how much solar radiation the Earth absorbs? How does the
answer change if your planet is bigger?

Note that this calculation produces an underestimate of the time for the entire planet to
freeze out, and an overestimate of the time required for a crust to first form. The reason is that
in reality heat will be removed first from an upper layer of the magma ocean, allowing a crust to
form at some point less than the freeze-out time for an isothermal magma ocean. Once the crust
forms, the insulating properties of solid rock will greatly reduce the heat flow from the interior,
extending the time needed for the rest of the planet to solidify.

Problem 3.1.25 Energy balance of satellites

A spherical satellite with radius a1 is in a circular orbit at a distance r1 from its planet,
which is also spherical. The planet has radius ao and is located a distance ro from its star;r1 � ao

and ao � a1. Both the planet and the satellite are perfectly spherical,both are isothermal. The
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planet has zero albedo in the shortwave (solar) spectrum, but the satellite haz a shortwave albedo
of unity so that it is not directly heated by the star. The satellite absorbs perfectly in the infrared
spectrum.

Derive an expression for the temperature of the satellite, and compare this to the tempera-
ture the satellite would have if it had zero shortwave albedo and were heated directly by the sun.
Based on these results, do you think one needs to include the infrared emission of Saturn when
computing the temperature of Titan (which orbits at a distance of about one million km from
Saturn)?

How do your results change if you relax the assumption r1 � ao, i.e. you allow the orbit
to be so close that the planet ”fills the sky”? (This regime is unlikely for natural satellites, but is
quite common for artificial satellites in low orbit about the Earth or other planets).

Problem 3.1.26 A sphere rests on an infinite horizontal plain with uniform temperature T . Both
the sphere and the plane are perfect blackbodies. The sphere does not absorb any sunlight. There
is no atmosphere, so the only tranfer of heat is by radiation. What is the temperature distribution
of the surface of the sphere if it is a perfect insulator so no heat is transferred from one place to
another within the sphere? What is the temperature of the sphere if it is filled with a well-stirred
fluid which keeps the surface isothermal?

3.1.4 The Greenhouse Effect

Problem 3.1.27 For Jupiter, the observed OLR is 14.3W/m2. Compute the effective radiating
temperature. Referring to the Jupiter temperature profile given in Chapter ??, estimate the
effective radiating pressure of Jupiter. Is there more than one possible value? Which of these do
you consider more likely?

Problem 3.1.28 Early Mars Climate

The surface of Mars has river-like channel networks that suggest that at sometime in the
past Mars was warm and wet. Some of these features date back to a time several billion years
ago when the Solar luminosity (and hence the Solar constant at the orbit of Mars) was about 25%
less than its current value. One school of thought states that the mean surface temperature of
Mars would have to have reached values at the freezing point (273K) or above to account for such
features.

Assume that Early Mars had a dense atmosphere that kept its surface temperature ap-
proximately uniform, and that the planet had an albedo similar to the present one (about .25).
Compute the greenhouse effect – as measured by prad/ps – needed to bring the surface temperature
of Early Mars up to the freezing point under the following three alternate assumptions regarding
the vertical profile of temperature:

• (a)A pure CO2 atmosphere on the dry adiabat.

• (b) A mixture of equal parts (molar), of CO2 and N2 on the dry adiabat

Note that if κ is the grey absorption coefficient for the gas, then prad/ps = g/κps, so you are in
essence computing the surface pressure of CO2 needed to make Mars warm and wet. In Chapter
?? this problem will be done with real-gas radiation physics, and it will seen in that case that
the effects of CO2 condensation on the profile can significantly inhibit warming. Why might CO2

condensation aloft affect the warming?
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For the purposes of this problem, you may assume that the ground temperature is equal to
the low-level air temperature.

Problem 3.1.29 Consider an atmosphere whose temperature profile is on the dry adiabat with
R/cp = 2

7
, all the way down to zero pressure (infinite altitude). The surface temperature is 300K

and the surface pressure is 105Pa. The gravity is the same as Earth’s gravity, 9.8m/s2. We mix
in a hypothetical greenhouse gas with mass concentration q. The greenhouse gas has the property
that its absorption coefficient κ is 1m2/kg for wavelengths between 15 microns and 18 microns,
and is zero elsewhere. Mixing in the greenhouse gas does not change the temperature profile, and
you may assume that q is small enough that the change in surface pressure may be neglected. The
radiating pressure for any given κ is estimated using κqprad/g = 1, and the radiating temperature
is the temperature at this pressure level. Using this estimate, answer the following questions.

The radiating temperature, or brightness temperature, for any give frequency ν is the temper-
ature Trad such the actual emission to space is equal to the blackbody emission πB(ν, Trad). Sketch
a graph of the brightness temperature vs frequency, showing curves for a range of q from zero to
0.1. Compute a graph of the way the spectrum of outgoing radiation (as observed from space)
depends on frequency, for the same range of q. Finally, graph the behavior of the net outgoing
radiation (i.e. the integral of the curves in the previous question) as a function of q.

Hint: You can answer the last question using the fact that the integral of πB(ν, T ) over all ν

is σT 4, together with a numerical evaluation of the integral over the 15 to 18 micron band. When
the frequency interval is small enough that B is essentially constant over the frequency range,
then the numerical integral should be approximately πB(νo, T )∆ν, where νo is the frequency at the
center of the band. How well does this approximation match the numerically computed value?

Problem 3.1.30 Consider an atmosphere in which, for some reason, the temperature increases with
height, according to the formula T (p) = Ts + a · (ps − p) with a a positive constant. Suppose that
the addition of a greenhouse gas elevates the radiating level to prad < ps. Find an expression for
the dependence of the surface temperature on ps, assuming that the atmosphere is in equilibrium
with an absorbed solar flux S · (1− α) per unit surface area of the planet.

Problem 3.1.31 Taking into account its observed albedo, Titan absorbs 2.94W/m2 of solar radi-
ation (averaged over its entire surface). The observed surface temperature is 95K. If you assume
that the temperature profile of the atmosphere is given by the dry adiabat for pure N2 having
a surface pressure of 1.5bar, what would the radiating pressure for Titan have to be in order to
account for the observed surface temperature?

Problem 3.1.32 Analysis of the Earth’s observed radiation budget

To do this DataLab, you will need to know how to read tabular data from a text file using
whatever software you are using for data analysis, and to perform simple arithmetic manipulations
of the data. This DataLab can be done using most common spreadsheets and many kind of plotting
software, as well as in programming languages such as Python or Matlab.

The course data directory contains a number of plain text files containing data for the
zonal mean (i.e. mean along latitude circles) of quantities measured by the Earth Radiation
Budget Experiment, and also surface temperature data. These are contained in the subdirectory
Chapter3Data/ERBE/. Carry out the following analyses on the data:

For July 1988, carry out the following analyses:

• From the OLR data, compute the effective radiating temperature Trad as a function of latitude
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• Plot it on the same graph as the actual surface temperature. Also, make a plot of the
difference between Trad and Ts. Where is the difference large? Where is it small? Discuss
your results, taking note of where it is summer and where it is winter.

• Estimate the radiating pressure prad assuming the surface pressure to be 1000mb and assuming
the atmosphere to be on the dry adiabat. Plot prad as a function of latitude. Note that this
will be an overestimate of prad because the real atmosphere is closer to the moist adiabat.

Python Tips: The chapter script ERBEplot.py gives an example of how to read the data, plot
it, and perform simple manipulations of the data.

Problem 3.1.33 The atmosphere as heat engine

A heat engine is a device that makes use of the temperature difference between two reservoirs
in order to do mechanical work. It transfers energy from the hot reservoir to the cold reservoir; the
difference between the energy drawn from the hot reservoir and the energy deposited in the cold
reservoir is the mechanical work that can be done by the device. For a cycle that starts and ends
at the same (p, T ) state, Eq. ?? implies that W ≡ −

H
ρ−1dp =

H
Tds. The final step proceeds from

the fact that δQ = Tds, where s is the entropy, and the fact that
H

cpdT = 0 around a closed loop
if cp is constant. (If cp is not constant the same result applies, but must be re-phrased in terms of
internal energy, defined by dU = cpdT .)

A planetary atmosphere works like a heat engine working between the temperature of the
star’s photosphere (6000K for our Sun) and the temperature of space (essentially zero). Only a
small part of this temperature difference can be tapped to do mechanical work, however. Consider
a dry atmosphere consisting of an ideal gas which is transparent to the incoming solar radiation.
All the incoming energy is absorbed at the planet’s surface, whereafter it is transferred by heat
conduction to the air in contact with the ground. Using the above thermodynamic relation, show
that if the atmosphere is transparent to infrared as well, so that the only energy loss to space is by
radiation from the ground, then the system cannot do any mechanical work. Hint: Think about
the surface heating up by a certain amount in time ∆t owing to solar absorption, and then cooling
down by the same amount owing to radiation of infrared.

Now suppose that the atmosphere is not transparent to infrared, and that the radiation
escapes to space from a pressure prad < ps, where ps is the surface pressure. Consider a cycle where
the atmosphere is maintained on a dry adiabat with surface air temperature equal to ground
temperature by the following process. Solar absorption increases the ground temperature and low
level air temperature by an amount ∆T in a time ∆T . The air, whose temperature is now Ts + ∆T

becomes buoyant and rises adiabatically (i.e. at constant s) to the pressure prad, where it cools down
by radiation until its temperature is equal to the ambient adiabat Ts · (prad/ps)

(R/cp) After that it
sinks adiabatically back to the ground, where the process starts all over again. Both the heating
and cooling occur at constant pressure. Sketch this cycle on thermodynamic diagrams in (p, 1/ρ)

and (T, s) space.

Compute the work done in the course of the preceding cycle, and describe how it depends on
prad/ps. This is the work available to drive the atmospheric circulation. The solar energy per unit
mass put into the parcel in time ∆t is cpδT . Compute the efficiency of the atmospheric heat engine
by dividing W (the work done per unit mass) by this quantity. Show that the thermodynamic
efficiency increases as the greenhouse effect is made stronger.
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3.1.5 Ice-albedo feedback, hysteresis and bifurcation

Problem 3.1.34 Computing the Ice-Albedo Hysteresis Diagram

Calculations with a complete real-gas radiation simulation indicate that, for a CO2 concen-
tration of 300ppmv, and with an atmosphere on the moist adiabat, a reasonable fit to the actual
OLR curve in the range of 220K to 310K is the linear fit OLR(T ) = a+b·(T−220) where a = 113W/m2

and b = 2.177W/m2K. Compute the ice-albedo hysteresis diagram giving the set of equilibrium
temperatures as a function of the solar constant L~. Note that there is a simple trick for getting
the bifurcation plot. The equation determining the equilibrium is 1

4
L~(1−α(T )) = OLR(T ) Instead

of specifying L~ and finding the T that satisfy the equation, we can re-write the equation as

L~ = 4
OLR(T )

1− α(T )
(3.3)

Now, if we call the right hand side G(T ), then G(T ) gives the unique value of L~ which supports
the temperature T . Hence, to get the bifurcation diagram, you can just plot G(T ) and then turn
it sideways.

Use the same albedo-temperature function defined in Chapter 3. Assume that the albedo
for an ice-free Earth is .2 and for an ice-covered Earth is .6.

Based on your calculations, if CO2 were held constant how much would L~ have to be
reduced from its modern value before Earth was forced to fall into an inevitable snowball state?
Using the inverse-square law and assuming a circular orbit, compute how far out from the Sun
the Earth would have to be displaced (relative to its present orbit) to achieve this solar constant.
Conversely, how close to the Sun would you have to place the Earth before a Snowball state became
impossible? Note: The assumption of fixed CO2 is very unrealistic, since tectonically active planets
with water have a way of adjusting CO2 in response to changes in the solar constant. This will be
discussed in Chapter ??.

Python Tips: The script IceAlbedoZeroD.py, found in the Chapter Scripts collection for this
chapter, calculates and plots hysteresis diagrams using this method, and also makes various other
plots useful in understanding bifurcations due to ice-albedo feedback. You can easily modify this
script to solve this and similar problems, by redefining the OLR(T) function, and (in other cases)
also the albedo function.

Problem 3.1.35 Daisyworld This is a variant on a theme due to Lovelock. Daisyworld is a black
planet (zero albedo) upon which white daisies (albedo αd) can grow. The daisies are temperature
sensitive – if the planet is too cold, the daisies die out and decompose, leaving the albedo unaltered.
The same happens if the planet is too hot. In between, the daisy coverage varies such that
α(T ) = αd · 4(T − T1)(T2 − T )/(T1 − T2)

2, where T1 and T2 are the temperatures deterimining the
survival range for the daisies.

Assuming OLR(T ) = σT 4, discuss the possible equilibrium states of the climate and the way
they vary as the solar constant is changed. Which solutions are stable? Which are unstable? Does
this system exhibit hysteresis as the solar constant increases and decreases?

For simplicity you may assume T1 = 200K and T2 = 300K if you want, but you should discuss
how the qualitative behavior of the system changes as you vary αd between zero and unity.



50 CHAPTER 3. ELEMENTARY RADIATION BALANCE PROBLEMS

3.1.6 Kirchoff’s Law, Emissivity,absorptivity

Problem 3.1.36 Consider a sandwich made of three slabs of material The two outer slabs are
blackbodies, with temperatures T1 and T2 respectively. Between these two is a slab which is a grey
body having emissivity e. What is the temperature of the grey-body slab?

Problem 3.1.37 Suppose that the ground has temperature Ts, which is a given. The ground has
unit infrared emissivity. There is one isothermal layer above the ground with emissivity e1, and
another one above that with emissivity e2. Neither layer absorbs any Solar radiation, and neither
layer is affected by any heat transfer mechanism other than radiation.

Find an expression for the temperatures of the two layers. Do not assume that the emissiv-
ities are small.

Problem 3.1.38 Solar-absorbing stratospheric cloud

Consider an atmosphere which is transparent to solar and infrared radiation, except for
a high stratospheric cloud which has emissivity e in the infrared and absorptivity a in the solar
spectrum. The cloud is above the region reached by convection, so it is in equilibrium with the
absorbed energy from upwelling infrared coming from the planet’s surface, the solar radiation
which it absorbs directly, and the infrared cooling due to the cloud’s emission; it receives no heat
at all from fluid dynamical transports. The surface of the planet has constant albedo α, and has
unit emissivity in the infrared. The whole system is in equilibrium with an incident solar flux S

per unit area of the planet’s surface.

Compute the surface temperature and the temperature of the cloud. Under what circum-
stances does the cloud increase the surface temperature? Under what circumstances does it cool
the surface? Note: this ”cloud” is somewhat like the Earth’s ozone layer, which absorbs ultraviolet
from the Sun, but also has significant infrared emissivity.

Hint: First do the problem with α = 0 to get a feel for what is going on. Then add in the
terms in the budget that come from reflection of solar radiation off the ground.

Problem 3.1.39 Consider an optically thin atmosphere which has a nonzero emissivity e within
a very narrow frequency band of width ∆ν centered on frequency νo. This atmosphere is above a
surface having a known temperature Tg, which radiates like a blackbody. What is the temperature
of the atmosphere if no convection is allowed to take place? Explore how the temperature varies as
a function of νo. Does the result depend on ∆ν? On the emissivity? Put in numbers corresponding
to Martian afternoon conditions: Tg = 230K, and νo corresponding to a wavenumber of 650 cm−1

(approximately the center of the principle absorption band of CO2).

3.1.7 Second-law challenges

These rather open-ended questions provide some food for thought.

Problem 3.1.40 Do burning glasses violate the Second Law?

With a magnifying glass on a clear, sunny day, you can focus sunlight to a small dot and
achieve extremely high temperatures. The same could be done with a parabolic mirror. Suppose
you are conducting this experiment in the vacuum of space, so you needn’t need to be concerned
with losses due to atmospheric absorption or reflection. Based on the Second Law, what would
you expect the maximum achievable temperature to be at the focus? Do magnifying glasses and
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mirrors indeed conform to this limit? What processes, if any, keep these devices from violating the
limit? Hint: Think about the implications of the Sun’s finite angular size, as seen from any given orbit.

Problem 3.1.41 Do solar-electric furnaces violate the Second Law?

One could set up a large array of solar cells in the desert, and then use the electricity
generated to power an electric furnace in which the electric energy is dissipated in a small enough
volume to achieve an arbitrarily high temperature. Do such devices violate the Second Law?

Problem 3.1.42 Frequency Doublers

Green laser pointers make use of a nonlinear frequency-doubling device, which takes near-
infrared laser input and doubles the frequency to produce green light. This is not a filter, but
a transformer of frequency. If such a frequency doubler could be made lossless so that it didn’t
consume any energy, could you use it to make a device that violated the Second Law (i.e. an ener-
getically closed device that would spontaneously generate temperature gradients from an isothermal
state)? Hint: Think about what you could do if such a frequency doubler were used in place of the
selective mirrors in Kirchoff’s argument for Kirchoff’s Law.
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4.1 Workbook

4.1.1 Basic Grey-Gas calculations

Problem 4.1.1 Suppose that the temperature profile in an atmosphere is T (p) = Ts · (p/ps)
(1/4).

(This is a rather contrived temperature profile, but it is chosen to make the algebra simple).
The ground temperature is equal to Ts. Compute the OLR and the downward radiation into the
ground, assuming the atmosphere to be a grey gas with constant absorption coefficient κ. Discuss
the behavior in the limits of large and small κ.

Problem 4.1.2 Grey Gas OLR computations

In this computational problem you will explore the grey-gas OLR for the temperature profile

T (p) = max[Tstrat, Tsa · (
p

ps
)R/cp ] (4.1)

where Tstrat and Tsa are constants. This profile follows the dry adiabat until the temperature falls
to Tstrat. At lower pressures (higher altitudes), the temperature is held constant at Tstrat. This
is a primitive model of a stratosphere, in that the temperature is prevented from falling to zero
with height. You may assume that the specific absorption cross section of the atmosphere (κ) is
independent of pressure and temperature, as well as frequency. Note that this absorptivity enters
the problem only through the net optical thickness of the atmosphere τ∞. If we set Tstrat = 0 the
problem reduces to the all-troposphere problem discussed in the text, in which T approaches zero
as p approaches zero. The ground temperature Tg may differ from the surface air temperature Tsa.

Write a program defining a function that computes OLR in the above situation by evaluating
the integral form of the solution to the Schwartzschild equation using numerical quadrature. The
function should return the OLR as a function of the arguments Tg, Tsa, Tstrat and τ∞.

Next, use your OLR function to estimate the temperature of a planet in equilibrium with an
absorbed solar radiation of 250W/m2. Do this for Tstrat = 200K and for optical depth τ∞ = .1, .5, 1.

and 5.. You may assume Tg = Tsa

Now explore the behavior of OLR as the optical thickness tauInf is varied between small
values (say, .1) and large values (say, 100), with Tstrat = 200K. Can you find a simple explanation
for the limiting behavior, based on what you know about blackbodies? Now reduce Tstrat to 100K

and try again. How does this change the behavior of OLR in the optically thick limit? Why?
Next, set Tstrat to zero. Compare the behavior of the OLR at large tauInf with the all-troposphere
formula derived in the text. (If you stick with the value of R/cp for air you will find it helpful
to know that Γ(1 + 8/7) ≈ 1.07. What if 4R/cp is an integer?). Recall that the all-troposphere
expression was derived assuming that τ∞ is large. Using your numerical computation of OLR,
discuss how the approximation breaks down as τ∞ becomes smaller. How good is the approximate
form for τ∞ = 1? What is the true behavior of OLR as τ∞ is made small? Give an explanation
for this behavior. Finally, set Tstrat = 100K again, and compare the OLR with the all-troposphere
formula. Where does the computed OLR diverge from the all-troposphere formula? Why? Under
what circumstances does the choice of Tg substantially affect the OLR, and what is the nature of
the effect?

Note that this problem is somewhat unrealistic, since we keep the stratospheric temperature
fixed as optical thickness is changed. In reality, changing the optical thickness would affect the
stratospheric temperature and the tropopause. Nonetheless, the problem provides some insight as
to how the stratosphere affects OLR.
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Python Tips: You can do this problem using a modification of the script GreyGasFlux.py

Problem 4.1.3 Computation of grey gas heating rates

In Fig. ?? we used a computation of net radiative flux to determine which portions of an
all-troposphere atmosphere were subject to radiative cooling, and which would warm up and form
a stratosphere. Write a program to compute and plot the vertical profile of net upward flux for
a grey gas with temperature profile given by the dry air adiabat throughout the depth of the
atmosphere. The radiative fluxes can be most easily computed by evaluating the integral form
of the Schwartzschild equation solution using numerical quadrature. Compare the results to the
optically thick approximation. Check your routine by reproducing the results in Fig. ??, which
was done assuming a pressure-independent absorption coefficient.

Now re-do the calculation allowing for pressure broadening, i.e. a linear increase of absorp-
tion with pressure. The optical thickness in this case is given by

τ(p) =
1

2
κ(ps)

cos θ̄

g
(p2

s − p2) (4.2)

Plot the results and compare with the optically thick limit (modified to allow for pressure broad-
ening). What happens to the stratosphere as the atmosphere is made more optically thick?

Python Tips: Modify GreyGasFlux.py.

Problem 4.1.4 In Eq. ?? for I+ in the optically thick limit, we neglected the transmitted flux
from the ground and also assumed thatZ τ

0

T(τ, τ ′)dτ ′ ≈
Z ∞

0

T(τ, τ ′)dτ ′ = 1 (4.3)

Both approximations break down when τ is within a few optical depths of the ground. Find a
correction to the expression for I+ that remains valid near the ground. Show that this term yields
the low-level behavior of the net flux I+ − I− seen in the numerically computed grey gas results
shown in the optically thick panels of Figure ??.

Show that there is a similar correction term for I− at the top of the atmosphere, and discuss
its effect for a grey gas when T (p) is on the dry adiabat all the way to p = 0. How would your
answer change if T asymptoted to a constant at the top of the atmosphere?

Problem 4.1.5 Grey gas runaway greenhouse

Generalize formula ?? to the pressure-broadened case, i.e. the case in which the absorption
coefficient increases linearly with pressure. Specifically, assume κ = κo · (p/po), where po is the
reference pressure at which the absorption takes on the value kappao. Derive an expression for the
coefficient A(L/R) in the pressure-broadened case, and determine its value for water vapor, CO2

and CH4 using a numerical quadrature.

4.1.2 Pure Radiative Equilibrium

Problem 4.1.6 A solar-transparent stratosphere in a grey-gas atmosphere is in pure radiative
equilibrium with upward infrared flux I+,trop upwelling through the tropopause. Using Eq. ?? and
the fact that I+ − I− is constant in the stratosphere, show that at the tropopause

I+ + I− = 2
1 + ∆τ

2 + ∆τ
(4.4)
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where ∆τ ≡ τ∞− τtrop. Use this to find the stratospheric temperature at the top of the atmosphere
and at the tropopause. Show that both reduce to the skin temperature when the stratosphere is
optically thin.

Problem 4.1.7 Optically thick limit

In Section ?? it was shown that radiative transfer acts like a diffusion at wavenumbers for
which the atmosphere is optically thick, and the expression for the the radiative heating Hν was
given in Eq. ??. Suppose that the atmosphere is optically thick throughout the infrared. Show
that the total infrared heating H̄ ≡

R
ir

Hνdν still has the form of a diffusion, and write down the
expression for the effective diffusivity D̄(T, p) as an integral. Radiative equilibrium in the absence
of solar absorption is defined by H̄ = 0. Derive a differential equation describing the T (p) which
satisfies radiative equilibrium. The boundary condition for this equation is that the net infrared
flux out of the top of the atmosphere is equal to the OLR (which is taken as a specified constant
in this problem). Express this boundary condition as a requirement on dT/dp at p = 0. Note that
because of the boundary condition T = const is not the solution unless OLR = 0.

Show that this solution reduces to Eq. ?? for a grey gas with κ independent of p. Show that
the equivalence continues to hold even if κ = κ(p).

Problem 4.1.8 Using the results of Problem 4.1.7, compute the radiative diffusivity and the in-
frared radiative equlibrium solution for the following cases: (a) The atmosphere has constant
absorption coefficient κ0 within a narrow band of frequencies |ν − ν0| < 1

2
∆0, and is transparent

elsewhere; (b) In addition to the absorption described in Part (a), the atmosphere has an absorption
coefficient κ1 < κ0 for 1

2
∆0 < |ν − ν0| < 1

2
∆1.

In both cases you may assume that the absorption coefficient is independent of pressure
and temperature, that the band is narrow enough that the Planck function can be considered
independent of frequency within the band, and that the atmosphere is optically thick throughout
the band where the absorption coefficient is nonzero. With a bit of cleverness, Part (a) can be
done analytically, but for Part (b) you will probably need to find the approximate solutions to the
differential equation describing T (p) using numerical methods.

Fix ∆0 at a value corresponding to a band width of 25cm−1, and set ∆1 = 2∆0 Discuss how
the solution depends on ν0, the specified OLR, and κ1/κ0.

Problem 4.1.9 Muclear Winter

”Nuclear Winter” refers to the climate following an event such as (perhaps) a global ther-
monuclear war, which lofts a high-altitude long-lived soot layer into the atmosphere. As an idealized
form of this phenomenon, find the radiative-equilibrium temperature profile of a grey-gas atmo-
sphere below a soot cloud which is so thick that it completely absorbs the solar radiation incident
upon it. You may assume that the soot cloud is isothermal, and acts like a blackbody in the in-
frared. Do you expect a troposphere to form in this situation? How does the surface temperature
compare to what it would be without the soot cloud? What do you think would happen to the
precipitation?

Problem 4.1.10 Suppose that all the solar absorbers in an atmosphere are concentrated near the
ground. This is typical of the case where the absorption is due to dust or water vapor. Specifically,
assume that the profile of solar flux is F~ = (1− α)S · (1− a exp(−bτ)), where a and b are constants
with 0 < a < 1 and b > 0. Assuming that the atmosphere behaves like a grey gas in the infrared
with pressure-independent κ, compute the radiative equilibrium T (τ) and the radiative equilibrium
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ground temperature Tg. Under what circumstances does the atmosphere become internally unstable
near the ground? How does solar absorption affect the unstable temperature jump between the
ground and the overlying air? To keep the problem simple, you may assume that the ground has
zero albedo.

Problem 4.1.11 Consider a grey-gas atmosphere with a sharply defined internal absorbing layer at
pressure pa. The profile of downward solar flux is F~ = (1−α)S · 1

2
(1+tanh((pa−p)/∆p)), where ∆p is

the thickness of the absorbing layer. Find an expression for the radiative equilibrium temperature
profile, evaluate it numerically, and plot it. Determine analytically where the absorbing layer
causes the temperature to increase with height and where it causes the temperature to decrease
with height. Under what circumstances does the absorbing layer make the atmosphere unstable
to convection? You may assume that the absorption coefficient is independent of pressure in this
problem.

Problem 4.1.12 Global warming and Stratospheric cooling

One of the signatures of anthropogenic global warming is that, in response to increases in
greenhouse gas concentrations, the stratosphere cools at the same time the troposphere warms.
This problem explores the phenomenon for a grey gas atmosphere.

Suppose that an atmosphere acts as an ideal grey gas in the infrared with an absorption
coefficient κ independent of both pressure and temperature. Suppose that as a function of pressure

the solar flux decays according to the law F~ = S exp−bp/ps for some constant b. To keep things
simple, you may assume that the albedo of the ground is zero, so that all the incident solar radiation
is absorbed either in the atmosphere or at the ground. Thus, you can assume that OLR = S, as in
the derivation of Eq. ??. This also means you need not worry about absorption of upwelling solar
radiation reflected from the ground.

Show that in the notation of Section ??, τ∞ = κps/g, τ∞ − τ = κp/g and τS = τ∞/b. With
these relations you can find the profile T (p) using the solution given in Eq. ??. Since atmospheric
observations are made using pressure rather than τ as the vertical coordinates, it is important to
plot the temperature as a function of pressure if one wants to relate the theoretical behavior to
observations.

Increasing the greenhouse gas concentration while keeping the distribution of solar absorbers
fixed is equivalent to increasing τ∞ while holding b fixed. On the same graph, plot T (p) for τ∞ =

.25,.5,1,1.5,2 and 4, for a fixed value of b. Make graphs of this type for a range of b and explore the
behavior as b ranges from very small values (e.g .01) where there is essentially no solar absorption
to very large values (e.g 10) where all the solar energy is absorbed in the upper atmosphere.
Under what circumstances does an increase of the greenhouse gas concentration warm the lower
atmosphere but cool the upper atmosphere?

4.1.3 Real Gas basics

Problem 4.1.13 Derive the result given in Eq. ??. To do this, substitute y = 1/ζ and then do
an integration by parts. You will need the well-known result for the integral of the Gaussian,R∞
0

exp(−y2)dy =
√

π/2.

Problem 4.1.14 Discuss the behavior of the function F (`) =
R

κ−1
m P (κ/κm) exp(−κ`)dκ for: (a)

P = 2(1−x); (b) P = 2x; (c) P = 6x(1−x). (d) P = 4max(0, 2x−1) In all cases assume P = 0 unless
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0 ≤ κ ≤ κm. Pay particular attention to the behavior of F at large `. Under what circumstances is
the decay slower than exponential? What determines the decay rate at large `?

Show that if P (x) ∼ xb at small x, then F (`) decays like `−(b+1) at large `.

Problem 4.1.15 Consider a gas which is transparent outside of a single frequency band, within
which the transmission function is described by the Malkmus model. Compute the radiative
cooling rate for an unbounded atmosphere which has a temperature discontinuity at pressure po,
but is otherwise isothermal. Show that in the limit where the strong-line behavior dominates,
there is a square-root singularity in the vicinity of the discontinuity, which tends to wipe out the
temperature jump. Generalize this result by computing the radiative diffusivity for the one-band
Malkmus model, in the optically thick limit.

Problem 4.1.16 Write a transmission function that uses the exponential-sum representation to
compute the transmission function as a function of path, for a single band for which exponential
sum coefficients have been tabulated. You may assume that the gas has uniform temperature
along the path. Read in exponential sum data for a few bands near the 666 cm−1 principle CO2

absorption feature, and graph the transmission as a function of path.

Exponential sum tables for various gases are found in the subdirectory ExpSumTables of the
Workbook datasets directory for this chapter, available as part of the online supplement.

Python Tips: It is easier to organize the calculation if you define a bandData object which
stores all the necessary information for each band. Then, when you need to sum up over multiple
bands, you only need to make a list of bands and loop over the bandData objects in the list. This
is how the homebrew radiation code is implemented in the courseware.

Python Tips: You can compute your own exponential sum tables using the function makeEsumTable

in the chapter script PyTran.py, which makes use of the HITRAN database. A limited subset of HITRAN
is included in the Workbook dataset directory for this chapter.

Problem 4.1.17 Working with HITRAN

A subset of the HITRAN database and its documentation is included in the Workbook datasets
directory for this chapter, in the subdirectory hitran. The database itself, separated into files for
each molecule, is in hitran/ByMolecule. The data is in plain text table format, and is not very
hard to read. Read the documentation on the data format, and write a routine that reads in line
strengths and line widths for CO2. These values will be at the standard pressure and temperature
for the database. To get a feel for the data, compute and plot the number of lines present in a series
of bins of width 50cm−1, covering the wavenumber range for which data is available. Compute and
plot the median, maximum and minimum line strength in each bin.

Then, assuming the Lorentz line shape, use the line strength, position and width information
to sum the contributions of each line (at standard width) and create a plot of the absorption
coefficient as a function of wavenumber. When summing the contributions, you should cut off
the contribution past a certain threshold distance from the line center; there are various empirical
far-tail line shapes in use, but for this problem a simple truncation will do. Try truncating at a
fixed number of line-widths (e.g. 100). Try truncating instead at a fixed wavenumber distance
(e.g. 10 cm−1 from the line center). How much does the result depend on the cutoff prescription?
These calculations will take quite a lot of computer time, even if you are quite clever at writing an
efficient algorithm. You can keep down the time needed by restricting attention to just a portion
of the wavenumber domain.
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Next, fix the line cutoff prescription and look at how the absorption spectrum changes as
you increase the pressure from 100 mb to 100bar. You do this by rescaling line widths and peak
values according to pressure, as described in the text. Note that the curves become smoother at
higher pressure. Why is this? Compare results with a cutoff based on a fixed number of widths
with those based on a fixed wavenumber value.

Once you’ve mastered these techniques, the HITRAN database can provide endless hours of
enjoyable perusal of spectroscopic properties. Take a look at some infrared absorption properties
for molecules not discussed in the text. Some particularly interesting ones to look at are ozone,
SO2 and the minor isotopologues of CO2.

Python tips: The chapter script PyTran.py reads the line database, computes absorption
coefficients, and provides functions to perform utility tasks such as generation of exponential-sum
tables.

4.1.4 Calculations with polynomial OLR fits

The following problems involve calculations with polynomial fits to the ccm model OLR calculation
for an Earthlike atmosphere. The fitting coefficients needed are found in Tables ?? and ?? in the
text.

Python Tips: The chapter script OLRPoly.py contains the fitting coefficients given in the
tables, and also contains an interpolation routine that makes it easy to compute OLR(Tg, CO2)
for arbitrary values of the arguments.

Problem 4.1.18 For a dry air Earth atmosphere on the dry adiabat, with 1000ppmv of CO2 mixed
in, the OLR(Tg) computed from the ccm radiation model can be well fit by a polynomial a+bx+cx2,
where x ≡ Ts − 275.. The coefficients a = 273.9,b = 3.9436 and c = .026987 provide a fit good to
better than 1% over the temperature range 250K to 350K.

Compute and graph the radiating temperature Trad and radiating pressure prad as a function
of Tg. Also, make a graph comparing dOLR/dTg for the polynomial fit with the grey gas value 4σT 3

g .
Why does the grey gas estimate differ from the actual slope? (Recall that the slope is important
because it provides a measure of climate sensitivity).

Problem 4.1.19 Table ?? gives a cubic polynomial fit of OLR vs. Tg for a moist Earth atmosphere
with fixed relative humidity, with temperature on the moist adiabat. Results are given for several
different values of CO2 concentration.

Compute and graph the radiating temperature Trad and radiating pressure prad as a function
of Tg. Note that since the OLR fit was done for an atmosphere on the moist adiabat, you will need
to use the moist adiabat to compute prad from Trad. Also, make a graph comparing dOLR/dTg for
the polynomial fit with the grey gas value 4σT 3

g . Why does the grey gas estimate differ from the
actual slope? Discuss how the temperature affects the comparison. How does dOLR/dTg compare
with the dry value you obtained in Problem 4.1.18? (Recall that the slope is important because it
provides a measure of climate sensitivity). Carry out your analysis for several different values of
CO2 concentration.

Python tips: Use the object MoistAdiabat in the phys courseware module to help you compute
prad.

Problem 4.1.20 Recompute the ice-albedo bifurcation diagram in Fig. ?? using the polynomial
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OLR fit for 50% relative humidity. Do the calculation for several different values of CO2 concen-
tration, and discuss the results in light of Earth’s actual climate history. Note: This calculation
neglects the effect of clouds, so for any given L~ the temperature in the unglaciated state will tend
to be too warm and the temperature in the fully glaciated state will tend to be too cold.

Problem 4.1.21 Recompute the ice-albedo bifurcation diagrams in Fig. ?? using the polynomial
OLR fit for 50% relative humidity. In this case, use the CO2 concentration as your control parameter
instead of prad. Show results for various different values of L~ ranging from 500 W/m2 to 3000
W/m2. In cases where the CO2 concentration you need to fill out the diagram lies outside the range
of validity of the polynomial fit, just show the portion of the diagram for which the fit is valid and
sketch in the qualitative behavior of the missing bits of the curve. Note that the remark about
clouds in Problem 4.1.20 applies to this problem as well.

Hint: As was the case for the bifurcation diagram using L~ as the bifurcation parameter,
it is easiest to find the control parameter which yields a given temperature Ts and then plot the
control parameter (CO2 in this case against Ts sideways. This procedure is easier because there is
a unique CO2 corresponding to each Ts, whereas there are multiple solutions for Ts for a given CO2.
To find the CO2 corresponding to Ts, first find the OLR needed to achieve that temperature, then
use a Newton’s method iteration to find the value of ln CO2 that corresponds to this OLR. You will
need a function that gives you OLR(Ts, ln CO2); this is obtained by interpolating the coefficients in
Table ?? to the desired value of ln CO2 and then evaluating the resulting polynomial at Ts.

Problem 4.1.22 Consider an Earthlike planet orbiting a star with luminosity such that the solar
constant is 2000 W/m2 at a distance of 1 a.u. from the star. Using the information in Table ??,
find the CO2 needed to maintain an Earthlike habitable temperature as a function of distance from
the star. Do this for various assumptions about the humidity of the atmosphere. You may assume
the albedo of the planet to be 20%.

4.1.5 Real Gas and Semi-grey Radiation Computations

Many of the problems in this and the next section require use of the homebrew exponential sums
radiation code, though the more Earthlike ones can be done using the ccm radiation code as an
alternative. The basic building block of the homebrew code is a routine to compute the transmission
function for a single band, which was done in Problem 4.1.16. All the necessary exponential sum
tables have been precomputed for you, and are found in the workbook dataset directory for this
chapter, available in the online supplement. The tables are in the subdirectory ExpSumTables.
The rest of the procedure is described in the text. It is not too hard, but still it takes some doing
to implement. Hopefully, if you are not using the ready-made Python courseware, your instructor
will have done some of the work for you in advance, in whatever programming environment is
being used as an alternative.

Python tip: The homebrew radiation computation is implemented in the modules miniClimt.py
for a well-mixed greenhouse gas and in miniClimtFancy.py for an inhomogeneous greenhouse gas.
The latter also implements a crude representation of temperature scaling of line strengths, and an
allowance for the difference between self-broadened and foreign-broadened absorption. The ccm
radiation model has also been made available through a user-friendly Python interface, using the
climt module to interface to the fast, compiled Fortran code. Some functions useful for radiation
calculations using the ccm model are defined in the chapter script ccmradFunctions.

Problem 4.1.23 The semigrey skin temperature is defined by Eq. ??. Using Newton’s method or



4.1. WORKBOOK 61

some similar root-finder, make a plot of Tskin/Tg as a function of hνo/kTg. Analytically derive the
behavior of Tskin/Tg in the limit of small and large hνo/kTg.

Problem 4.1.24 Numerically determine the pure-radiative equilibrium for a semigrey atmosphere,
in equilibrium with a specified ground temperature Tg. You find the equilibrium by numerically
computing the net radiative cooling as an integral (you should already have code to do this from
having done the previous problems), and then time-stepping the temperature equation until equi-
librium is reached.

Let νo be the frequency at the center of the narrow absorbing band of the atmosphere. Pick
a nuo in the infrared range, and explore how the equilibrium profile T (p)/Tg varies as you change
Tg. How does the result depend on nuo?

Python Tips: The numerical computation can be done using a variation of the general
radiative-convective equilibrium script RadConvEq.py. To do the semigrey case, just edit the
radmodel.bandParams line so that the one-band Oobleck data is used in the homebrew radiation
model.

Problem 4.1.25 This problem addresses the role of the water vapor continua in determining the
Kombayashi-Ingersoll limit. Consider a pure saturated water vapor atmosphere, and compute the
OLR as a function of surface temperature, neglecting all absorption due to the two water vapor
continua. In other words, recompute Fig. ?? without the continua. Then, re-do your calculation
with only the lower wavenumber continuum region included. Finally, compute the OLR including
the higher wavenumber continuum region, but assuming the atmosphere emits no radiation at
wavenumbers outside the continuum. How well does this calculation reproduce the Kombayashi-
Ingersoll limit?

Python Tips: Using the homebrew radiation code as in the script RealGasRunaway.py, you can
suppress the continuum by simply setting the continuum function to NoContinuum. To suppress just
the higher wavenumber continuum, you need to go into the homebrew radiation module imported
by RealGasRunaway.py and edit the water vapor continuum function so it only calculates the lower
wavenumber continuum. To do the last part of the problem, you need to edit the radiation code so
that it sums up only contributions to OLR from the continuum regions, and ignores contributions
from all other wavenumbers.

Problem 4.1.26 Using the homebrew radiation model for a saturated pure water vapor atmosphere
(as in Fig. ??), make a graph of the OLR as a function of surface gravity g for a fixed surface
temperature Tg = 400K, and demonstrate the fit of Eq. ?? for the parameters given in the text.

4.1.6 Tropopause height

Problem 4.1.27 This problem examines the effect of lapse rate on the tropopause height for a real
gas.

Consider an atmosphere whose temperature profile is governed by the moist adiabat for a
mixture of water vapor in air, but whose radiative properties are determined by a mixture of 300
ppmv of CO2 in dry air. In other words, in this problem we include the effect of water vapor on
the adiabat, but neglect the radiative effects of water vapor. Using hard-convective adjustment,
compute the tropopause height by running a radiative-convective model to equilibrium. Carry out
the calculation for surface temperatures of 280K and 300K. Compare the results with the what
you would get for these two temperatures using the dry air adiabat instead of the moist adiabat.
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Note: You can spot the tropopause height either by noting where the temperature profile departs
from the adiabat, or by looking for where the radiative heating falls to essentially zero.

Python Tips: This problem is done by making use of the script RadConvEq.py, uncommenting
the options for enabling convective adjustment and for using the moist adiabat.

Problem 4.1.28 Grey Gas Tropopause Height vs. τ∞.

In this problem, you will find the tropopause height for a grey-gas atmosphere in radiative-
convective equilibrium. In the troposphere, the temperature profile is assumed to be on the ideal gas
dry adiabat. The low level air temperature is assumed to be identical to the ground temperature.
The atmosphere is transparent to solar radiation. We’ll solve the problem by specifying the ground
temperature Tg and finding the atmosphere which is in equilibrium with this value.

You do not need to solve this problem by time-stepping. It still needs to be done with some
numerical analysis, but the problem can be solved in terms of numerical quadrature and a Newton’s
method root finder. The solution scheme runs as follows. First, re-write the problem in terms of
the optical thickness coordinate τ . τ∞ then becomes a specified parameter of the problem. Suppose
that the tropopause is located at τtrop. From the dry adiabat, we then know T (τ) between the
tropopause and the ground, whence the upward flux I+,trop can be computed as a definite integral.
This is the same integral as used in the grey all-troposphere model in the text, except that it is
only carried out only to τtrop and not all the way to τ = 0. You will need to implement a function
that evaluates this integral using numerical quadrature. This is the upward flux which heats the
stratosphere, since there is no solar absorption. The temperature for a stratosphere illuminated
by upward flux I+ was determined in Problem 4.1.6.

By evaluating this at the tropopause, you have the temperature Tstrat(τtrop. In general,
this will be discontinuous with the troposphere temperature just below the tropopause. If the
tropopause is too low, then the temperature jump is statically unstable, so the troposphere will mix
upwards by convection. The usual physical assumption governing the tropause height is that the
mixing proceeds until the unstable jump is just eliminated. Thus, the condition we impose at the
tropopause is that the temperature be continuous there. This uniquely determines the tropopause
height. The numerical calculation thus consists of three parts: a numerical quadrature routine to
compute I+,trop, a fairly trivial calculation of the corresponding stratospheric temperature, and a
Newton’s method adjustment of τtrop until the temperature continuity condition is satisfied.

Write down the equations which embody the temperature continuity condition, and show
that Tg drops out of the problem if all temperatures are written as T/Tg. In other words, the value
of τtrop which satisfies the continuity condition is independent of Tg.

Using the above procedure, make a graph of how the tropopause height depends on τ∞
for various values of R/cp. Can you explain the behavior in the optically thin limit analytically?
Show that without pressure broadening (i.e. constant κ) the tropopause moves to the top of the
atmosphere in the optically thick limit if 4R/cp > 1, and moves to the ground in the optically
thick limit when 4R/cp < 1. Note that this result says that, in circumstances when the radiative
equilibrium is statically stable at all levels, the atmosphere becomes all-stratosphere in the optically
thick limit. How does the tropopause behave if you assume linear pressure broadening, so κ =

κo · (p/po)?

If you are very good at evaluating definite integrals asymptotically by steepest descent, you
can actually do the optically thick limit analytically.

Problem 4.1.29 Real Gas Tropopause Height vs. τ∞.



4.1. WORKBOOK 63

Consider a solar-transparent dry atmosphere consisting of a mixture of Earth air with a
mass concentration q of CO2. The troposphere is assumed to be on the dry adiabat. The low
level air temperature is identical to the ground temperature. As in the text, we specify the ground
temperature Tg and find the atmosphere which is in infrared radiative-convective equilibrium with
the ground. Once the infrared cooling profile is computed from a radiation model, the equilibrium
is found by time-stepping, applying hard convective adjustment to eliminate unstable layers, as in
the examples done in the text. Any radiation model will do, but it is suggested that you use the
homebrew exponential sum model. This problem requires a fairly large amount of computation
time, so it is most suitable as an extended project spread over a few weeks. You can keep the
computation time down by using only 20-30 points in the vertical, which should be sufficient to
reproduce the basic behavior.

Take Tg = 300K and ps = 105Pa, and explore the behavior of tropopause height as q ranges
from small values to unity. Note that you ought to change the value of R/cp as q changes, but to
keep things simple you may keep R/cp constant at the value 2

7
appropriate to dry Earth air. Next,

explore how the behavior depends on Tg, for a few values ranging from 200K to 400K. The cold
case has some features in common with Snowball Earth.

Now re-do the problem for a pure CO2 atmosphere on a CO2 dry adiabat. In this case, you
vary the optical thickness by varying the surface pressure ps. Keeping Tg = 300K, try ps = 1000Pa

(similar to Mars), ps = 2bar, ps = 20bar, and ps = 90bar. The last of these is in the thick-atmosphere
regime of Venus; recompute it at Tg = 700K. How does the tropopause height change?

Note that for the hot, high-CO2 case you will need to use an exponential sum table that goes
far enough out in wavenumber to capture the surface emission. If you need to, you may assume
that the atmosphere is so optically thick in the wavenumbers past the end of the table that the
fluxes there do not contribute significantly to the infrared cooling.

There are various other variants of this problem you can try. For example, you can do
a problem with water vapor in air on the moist adiabat; in this case you would fix the relative
humidity, and the optical thickness would increase as you went to larger temperatures, which
yield higher water contents. Alternately, using the ccm radiation code you can do an atmosphere
consisting of water vapor, air and CO2, and vary the optical thickness by varying the CO2 with
fixed Tg.

Python tip: This calculation is implemented in the chapter script RadConvEq.py, which makes
use of the homebrew exponential sums radiation code.
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5.1 Workbook

5.1.1 Scattering basics

Problem 5.1.1 An atmosphere consists of a mixture of scattering particles with a grey gas having
pressure-dependent absorption coefficient κ(p) = κo · (p/po). The mass concentration of scatterers
is constant, and the scatterers have scattering efficiency Qsca = 2. The scatterers are spherical and
have the density of water. They do not absorb. Compute the profile of optical thickness τ(p) and
also the profile of single-scattering albedo ωo(p). Tabulate τ and ωo on a discrete grid of pressure
values. Using these arrays, make use of polynomial interpolation to write a function that returns
ωo(τ).

Python tips: The interpolation is easily done using the interp class.

Problem 5.1.2 Partial reflection at an interface

When a beam of radiation hits the interface of a smooth transparent body such as an ocean,
lake, or clear ice, part of the beam is transmitted but part is reflected. Partial reflection of this sort
is important in determining the albedo of such surfaces, most commonly for liquid bodies. The
albedo for such surfaces depends rather strongly on the angle of incidence of the beam. Maxwell’s
Equations can easily be solved to yield the reflection at a discontinuity in index of refraction. For
the case where the index of refraction is purely real, the answer is given by Fresnel’s formula. For
an unpolarized beam of light hitting a smooth surface with angle Θi relative to the normal, the
albedo is α = 1

2
(Rs + Rp), where

Rs =

„
sin(Θt −Θi)

sin(Θt + Θi)

«2

, Rp =

„
tan(Θt −Θi)

tan(Θt + Θi)

«2

(5.1)

and Θt is the angle of the transmitted (i.e. refracted) beam relative to the normal, given by Snell’s
law. For a horizontal surface such as an ocean or lake, Θi is the zenith angle. Stellar illumination
can generally be considered unpolarized.

Using Snell’s law, compute the albedo for near-normal incidence – i.e.Θi ≈ Θt ≈ 0 – as a
function of the jump in index of refraction. Compute the albedo for visible radiation at 0.6µm

striking a liquid methane lake at normal incidence, and at an angle of 45o. Do the same for a liquid
water lake. How different are the results for UV −B?

Problem 5.1.3 Compute the Rayleigh scattering optical thickness for Titan’s atmosphere, ideal-
izing it as consisting of 1.5 bar of pure N2. Do the calculation for visible, near-infrared and UV-B
wavelengths. If Titan’s stratospheric haze clouds were taken away, would Rayleigh scattering
contribute significantly to Titan’s albedo?

Problem 5.1.4 This problem involves computation of the properties of Mie scattering. The com-
putation requires the summing of a complicated infinite series whose terms require evaluation of
Bessel functions. You are not expected to program this summation yourself; Mie summation rou-
tines are widely available for many programming languages, and a few are provided as part of the
online software supplement.

Re-do Fig. ?? for a range of different real indices of refraction nR > 1. (Note that nR = 1.3

for liquid water).

Python tips: The Mie series summation is provided in the chapter script Mie.py.
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Problem 5.1.5 The file co2i4a.rfi.txt in the Workbook datasets directory for this chapter con-
tains the real and imaginary index of refraction for CO2 ice as a function of wavelength. Assuming
spherical CO2 ice particles with a radius of 5 µm, use the Mie scattering solution to determine the
scattering efficiency, absorption efficiency and asymmetry factor as a function of wavelength, from
the thermal infrared through the visible range. Plot the results. Also, save them in a file, since
you will need them in Problem 5.1.17 below.

Python tips: Modify Mie.py so that it reads in the data and loops over wavelength.

5.1.2 Use and derivation of basic 2-stream solutions

Problem 5.1.6 Consider a planet with a 5 bar atmosphere of N2 under a surface gravity twice
that of Earth. The surface of the planet is perfectly absorbing. There are no clouds, and you may
ignore absorption of stellar radiation within the atmosphere. Compute the Rayleigh scattering
albedo this planet would have in orbit around stars of spectral class M,G and A. How does your
answer change if the atmosphere consists of CO2 instead? (Note that in that case the neglect of
stellar absorption is less justifiable).

Problem 5.1.7 Doubling the Earth’s pre-industrial CO2 concentration would reduce the OLR by
about 4 W/m2, requiring the atmosphere to warm up to restore balance. Suppose instead we decide
to increase the albedo so as to reduce the absorbed solar radiation by 4 W/m2. How much increase
of albedo does this require? Assuming stratospheric sulfate aerosols to stay aloft for just one year,
how much mass of SO2 would have to be injected into the stratosphere annually to achieve this
albedo increase? Assume that the aerosols form into droplets with a radius of 1 µm, and that each
SO2 molecule injected forms one H2SO4 molecule, which forms a droplet which is composed of half
water and half sulfuric acid.

Note: Don’t try this at home! It will put your planet in a very precarious state because the
extra CO2 stays in the atmosphere around a millennium, whereas the sulfate aerosols will fall out
in a few years. The planet is thus at risk of being hit with a century’s worth of global warming in
just a few years, if the aerosol injection should ever cease.

Problem 5.1.8 Derive an expression for the albedo of a planet for which the incoming radiation
is diffuse and there is no incoming direct beam radiation. Assume the ground to be perfectly
absorbing (αg = 0) and the atmosphere to contain only conservative scatterers (ωo = 1). The
derivation is similar to that used to obtain the albedo for direct-beam incoming radiation, except
that the direct beam source terms are dropped and I− is no longer assumed to vanish at the top of
the atmosphere, but rather takes on a specified value I−,∞ which defines the incoming flux. Show
that the expression is the expression for α′a given in Eq ??, and state why the diffuse albedo of the
atmosphere is the same regardless of whether radiation is coming in from above or bouncing off
the atmosphere from below.

Use the expression for the diffuse albedo to derive Eq ?? for the conservative infrared-
scattering greenhouse effect. Hint: For conservative scattering, the transmission through the at-
mosphere is 1− α′a times the incident flux.

Problem 5.1.9 Solve Eq. ?? for I+(0) and discuss the result. Using this as the bottom boundary
condition for the conservative-scattering two-stream equations with direct beam incoming radi-
ation, derive Eq. ?? for the planetary albedo allowing for surface reflection. The derivation is
precisely the same as the derivation used to obtain Eq. ??, except for the change in the boundary
condition on I+(0). Note that it is not necessary to re-do the derivation from scratch. Since the
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problem is linear, it suffices to add the portion of I+ transmitted through the atmosphere to the
previous expression for I+,∞, and use the result to obtain the modification to the albedo formula.

Problem 5.1.10 For a conservatively scattering atmosphere over a perfectly absorbing surface,
plot the albedo as a function of the zenith angle, for an optically thick case with τ∞ = 10. Show
results for various values of the asymmetry factor, and compare results between the hemi-isotropic,
quadrature and Eddington approximations. When do you get spurious negative values of the
albedo? Derive an analytical criterion which defines the circumstances under which the albedo
goes negative.

Problem 5.1.11 For a conservatively scattering atmosphere over a perfectly absorbing surface,
plot the albedo as a function of the optical depth for a few different values of the zenith angle.
Fix the zenith angle at 45o, and do the same for a range of values of the asymmetry parameter.
Discuss the exponential and algebraic stages of increase of albedo with optical thickness. For this
problem, you may restrict attention to the hemi-isotropic approximation.

Problem 5.1.12 Generalize the albedo formula in Eq. ?? to allow for finite optical depth of the
atmosphere. To keep things simple, you may assume that the asymmetry factor is zero and that
the ground is perfectly absorbing.

Problem 5.1.13 A Diabolical Mirror

Suppose you could make a mirror that is perfectly transparent to radiation with wavenum-
bers greater than 5000 cm−1 but perfectly reflective at lower wavenumbers. (Optical supply com-
panies actually do sell mirrors that are rather like this.) You put this mirror atop a well-insulated
box that does not allow any heat to leak out, so that the only energy that leaves the box is in the
form of radiation that escapes through the mirror. The interior of the box has unit emissivity at
all wavenumbers.

You expose this box to sunlight having a Planck spectrum corresponding to a temperature
of 6000 K. Once the box reaches equilibrium, what is its temperature? Does the equilibrium
temperature depend on the value of the radiation flux incident on the box – i.e. does it matter
whether you do this experiment on Mercury or Mars?

Problem 5.1.14 Consider a planet with a pure N2 atmosphere and a surface that is perfectly
absorbing throughout the spectrum. High N2 ice clouds form, which have zero infrared emissivity,
but are highly reflective in the thermal infrared. The albedo in the thermal infrared is αir, and
the albedo in the solar spectrum which illuminates the planet is αsw. What is the equilibrium
temperature of the planet? You may ignore gaseous Rayleigh scattering, and assume that the
atmosphere is purely transparent in the infrared.

Problem 5.1.15 In the text Eq. ??, describing the scattering greenhouse effect in the presence of
absorption and emission, was derived assuming the atmosphere to be optically thick. Generalize
this result to the case where the atmosphere is not assumed to be optically thick. Also, allow
the ground temperature Tg to be different from the temperature T of the atmosphere, which
should still be assumed isothermal. Write your solution in terms of an atmosphereic transmission
coefficient Atrans and an atmospheric emission coefficient Aemiss, so that the OLR takes the form
AtransπB(ν, Tg)+AemissπB(ν, Tg). Show that your result reduces to the previous one in the optically
thick limit. Discuss the behavior in the limit ωo → 1 with fixed (but large) τ∗∞.

Note that this solution applies as well when the absorbing/scattering layer is a high isother-
mal cloud deck and there is a layer of transparent non-scattering atmosphere between the ground
and the cloud base.
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Problem 5.1.16 Net effect of Venus clouds

Assume that the clouds of Venus are made of spherical concentrated sulfuric acid droplets
with a radius of 5 µm. How much mass of sulfuric acid per square meter must be present in the
cloud deck in order to give Venus an albedo of 70% in the visible spectrum at 0.5 µm? You will
need to make use of conservative Mie scattering results corresponding to the index of refraction
of sulfuric acid;remember to include the effect of the asymmetry factor in your albedo calculation.
You may ignore all absorption in the cloud deck, and assume any radiation that passes through is
absorbed in the atmosphere or at the surface. (In reality some would be bounced back by Rayleigh
scattering.)

Now let’s estimate the effect of the same cloud deck on OLR. Venus clouds are in a high
cloud deck near the top of the atmosphere, and can be thought of as a partially absorbing infrared
mirror acting as a leaky lid. At some infrared wavelengths, Venus clouds are strongly absorbing
and emitting, and don’t scatter significantly. At others, scattering is significant. As an idealization,
compute the diffuse infrared albedo of the cloud deck at wavelengths of 10 µm and 2 µm, assuming
the clouds to be conservative scatterers. Compare these with the visible albedo you estimated
previously. Could the scattering greenhouse effect significantly offset the high visible albedo?
At the opposite extreme, assume that the clouds are so strongly absorbing that the cloud deck
acts like an ideal blackbody radiating at temperature Tcloud. What value would this temperature
have to have in order for the emission to balance the absorbed solar radiation, given the visible
albedo assumed above? Compare this to the observed temperature range of the cloud deck, which
is 230K-260K. Could the absorption/emission greenhouse effect also significantly offset the high
visible albedo?

Finally, let’s get an idea of where in the infrared spectrum the clouds are acting as absorbers
and where they are acting as scatterers. At 10 µm the index of refraction is (nR, nI) = (1.9, .46), and
at 2 µm it is (1.4, .0048). Use Mie theory to determine the scattering and absorption efficiencies,
and hence the single scattering albedo ωo for the cloud deck. You will also need the asymmetry
factors. Then plug the result into Eq. ??, which describes the emission from a thick, isothermal
cloud deck. When does the layer radiate almost like a blackbody? When does the scattering
significantly reduce the emission? Note in circumstances when the scattering significantly reduces
the emission, the cloud layer will also be quite reflective to infrared hitting the cloud deck from

below. You can get a more quantitatitive appreciation of this by examining the solution to Problem
5.1.15.

Problem 5.1.17 Radiative effects of CO2 ice clouds

This lengthy (but hopefully rewarding) problem serves as an archetype for the determination
of the net climate effect of high clouds which both scatter and absorb. The problem was originally
motivated by the effect of CO2 ice clouds on Early Mars, but the occurrence of such clouds is
generic to a broad class of problems involving cold, thick CO2 atmospheres. While the specifics
are worked out for CO2 optical properties, the techniques carry over without change to other
substances. The model problem described below can readily be generalized to include a nontrivial
gaseous atmosphere below the cloud deck.

The model problem we consider starts with a transparent nonscattering atmosphere above a
surface with temperature Tg. The surface is an ideal blackbody in the thermal infrared spectrum,
but has an albedo αg for wavelengths shorter than 1 µm. Tg is assumed to be low enough that
the surface emission at near-IR and shorter wavelengths can be neglected. To this base state, we
add a cloud deck at the top of the atmosphere. This will reflect back some of the incoming stellar
radiation, and will also reduce the outgoing thermal radiation. The cloud deck is isothermal with
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temperature Tcloud. It is composed of idealized spherical CO2 ice particles with a radius of 5 µm.
The mass path of particles in the cloud deck is 0.05 kg/m2. All absorption and scattering is due
to the particles, and the background gas is considered transparent.

First, let’s compute the albedo for incoming stellar radiation, assuming that the clouds are
conservative scatterers. Use Eq. ?? together with your CO2 ice Mie scattering results from Problem
5.1.5 to compute the albedo as a function of wavenumber. You may assume a fixed zenith angle of
45o. Show results for αg = 0, αg = .3 and αg = .7. The second of these approximates the Rayleigh
scattering from a thick CO2 atmosphere, and the last is typical of a Snowball Earth case. Finally,
for each case find the mean albedo weighted according to the Planck function for a G star with
T~ = 6000K and for an M star with T~ = 3000K. Examine the absorption efficiencies over the
stellar spectrum from the Mie calculation. How valid is the assumption of conservative scattering
for the G star? For the M star?

Next, we’ll find the effect of the cloud on the OLR. In this case we use the absorption as
well as scattering efficiencies from the Mie calculation, and do not assume conservative scattering.
Use the Mie results to compute ωo, and then plug all the results into the formula you derived in
Problem 5.1.15 in order to compute the emission and transmission coefficients of the cloud deck.
Plot these as a function of wavenumber, and also plot the OLR spectrum for Tcloud = 150K and
Tg = 260k. Compare the results with the Planck spectra corresponding to Tcloud and Tg. In what
parts of the spectrum is the cloud acting primarily like a scatterer? In what parts is it acting like
an absorber?

Finally, put in some number corresponding to Early Mars insolation. First, assume that Tg

is in equilibrium with the absorbed solar radiation given αg = .3. Then, compute how much the
solar absorption goes down when you introduce the cloud, and compare to how much the net OLR

goes down. For the latter, assume the cloud temperature is 150K. Does the cloud act to warm or
cool the planet? How sensitive is your result to the assumed cloud temperature?

5.1.3 Numerical 2-stream solutions

Problem 5.1.18 One of the new numerical techniques introduced in this chapter is the solution of
two-point linear boundary value problems using the ODE method, in which the solution is built
up from a pair of numerically determined fundamental solutions. Use this technique to write a
routine to solve d2Y/dx2 − aY = F (x) subject to Y (0) = Y (1) = 0, integrating the equations all the
way from one boundary to the other. Carry out the integration for F = sin πx and show what goes
wrong when a becomes large and positive (the analog of the optically thick case described in the
text). Then modify your routine to use the local-ODE method described in the text, and compare
the results with the exact analytic solution.

Problem 5.1.19 For this problem you will need an implementation of the numerical solution to
the two-stream equations, using the piecewise ODE method described in Section ??. This problem
only deals with the solution for a single absorption coefficient corresponding to a single frequency;
a problem involving exponential sums will be done later. The implementation is not intrinsically
difficult but getting all the algebra right for the matching conditions takes a bit of doing, and if
you are not using the Python implementation, it is to be hoped that your instructor has done some
of the groundwork for you.

First, take a case with constant T and ωo, and check the numerical results against some
of the conservative and nonconservative scattering solutions given in Section ??. Also check the
results against your answer to Problem 5.1.12. In that case, re-run the numerical solution with a
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nonzero asymmetry factor and see how the result changes. Extend the code so that it computes
heating profiles, and take a look at some of those. (Recall that in this kind of calculation you do not

need to compute heating from the fluxes by taking a finite difference. You can get them accurately
by simply evaluating the right hand side of the differential equation governing the fluxes).

Finally, let’s do something a little new with the calculation. We’ll do a highly simplified
estimate of the emission Titan would have at 100 cm−1 in the absence of its high haze clouds.
Assume that the atmosphere is on the dry N2 adiabat with surface temperature 95K and a surface
pressure of 1.5 bar, under Titan gravity. The gaseous absorption is dominated by the N2 continuum
at this wavenumber. The absorption coefficient is 1.3 · 10−6 at 100 mb and 100 K, and can be
considered to scale linearly with pressure. It is also temperature dependent, but you may ignore
that effect, to keep things simple. To this atmosphere, add a liquid CH4 cloud with uniform cloud
mass concentration in the lowest 500mb of the atmosphere. The cloud is made of spherical droplets
with a radius of 10 µm. They are purely scattering, with nR = 1.3. Find the OLR at 100 cm−1 as a
function of the cloud mass path. For selected values, calculate the profile of the heating rate, and
discuss how it is affected by the cloud.

Python tips: The piecewise ODE solutiom is implememted in the Chapter Script TwoStreamScatter.py.

Problem 5.1.20 Another bit of new numerics introduced in this chapter is the idea of solving
two-point boundary value problems by reduction to a matrix linear algebra problem. As a simple
illustration of this technique, apply it to the solution of the boundary value problem stated in
Problem 5.1.18. Discretized on a grid with uniform spacing ∆x, the problem becomes

(Yj+1 − 2Yj + Yj−1)− a∆xYj = Fjδx (5.2)

using centered differences. This corresponds to a tridiagonal linear system.

Read about tridiagonal solvers in Numerical Recipes, and implement a solution of this system
using a tridiagonal algorithm. Examine the solution for F (x) = sin πx, and look at the convergence
as the number of points in the grid is increased. Do the same for the case Fj = 1 for j = m and
Fj = 0otherwise. In both cases,pay particular attention to what happen as a is made large.

Python tips: A tridiagonal solver is implemented in the chapter script tridiag.py

Problem 5.1.21 Write a program which sets up the matrix describing the matrix version of the
two-stream equations, given by Eq. ??. Read about band-diagonal solvers in Numerical Recipes.
Implement the bandec algorithm, or learn to use a band-diagonal solver in the programming envi-
ronment of your choice. Use this algorithm to solve the two-stream equations for the simple case
in which ωo is constant, the atmosphere is isothermal, and there is no incident beam. Compare
the numerical solution with the analytical solution to this problem, paying particular attention
to what happens in the optically thick limit. Then try a case where T (τ) varies with height, and
check that the fluxes have the correct behavior in the optically thick limit.

Problem 5.1.22 Explain the joke in the title of Section ??. Is it funny? If not, why not.

Problem 5.1.23 Evaluate the sum ?? for a single band using a Malkmus transmission function.
Compare the OLR to what it would be if there were no reflecting surfaces. Attempt to derive a
similar series for the case in which there is a third partially reflecting surface at the midpoint of
the atmosphere.
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Problem 5.1.24 Polar CO2 clouds on Snowball Earth

This problem requires an implementation of the numerical two-stream solution incorporating
band-averaging via exponential sums. If you already have an implementation of the basic numerical
solution for a single wavenumber and absorption coefficient, the extension to the exponential sum
case is quite straightforward. The exponential sum tables you need are in the dataset subdirectory
Chapter4Data/ExpSumTables.

Consider a Snowball Earth case with an atmosphere consisting of 100mb of CO2 mixed with
dry air. In the polar winter regions, climate model simulations tend to show that convection shuts
off and transient radiative cooling effects lead to an atmosphere that is approximately isothermal.
Suppose that the atmosphere is isothermal with temperature Ta, and that the surface has temper-
ature Tg. It is possible for the air to become so cold that CO2 condensation occurs. To explore
the effects of this, suppose that there is a CO2 ice cloud made of spherical particles with a 5 µm

radius, with uniform mass concentration q in the lowest 100 mb of the atmosphere. Using the
exponential sum two-stream radiation calculation, compute the effect of this cloud on the spec-
trum of OLR, for various value of q. Discuss the effect of the cloud on the net OLR. You may
pick any reasonable values of Ta and Tg that will help you bring out the essential features of the
problem. If you are energetic, you can use the actual Mie theory scattering results to determine
the wavelength-dependent scattering properties of the cloud, but to get at the basic behavior, just
using a constant scattering cross section estimated crudely from the Mie results, and ignoring cloud
absorption, should be sufficient.

Python tips: The basic exponential sum calculation with scattering is implemented in the
Chapter Script TwoStreamScatterEsum.py, which can be modified to solve this problem.

5.1.4 Absorption of stellar radiation

Problem 5.1.25 Albedo of dense CO2 atmospheres

Venus-like atmospheres should be common throughout the Universe, for planets which have
lost their water but still have accumulated enough carbonates to allow the creation of a thick CO2

atmosphere. Such planets may or may not have a sulfuric acid cloud deck like that of Venus,
and so it is important to understand what the albedo would be without clouds. This problem
was considered in the text, but without incorporating the joint effects of gaseous absorption and
Rayleigh scattering. Now you will bring together both effects.

Consider a planet with a pure CO2 atmosphere, which has zero surface albedo throughout
the spectrum. The surface pressure is ps, and the surface gravity is 10 m/s2. CO2 has significant
absorption for wavenumbers below about 15000 cm−1, and in this part of the spectrum you need to
use exponential sums to compute the albedo. However, it is not necessary to numerically solve the
two-stream equations for this problem, since you can use the analytical solution for the albedo given
by the generalization of Eq. ?? done in Problem 5.1.12. You use the exponential sum coefficients
to form a weighted sum of calculations for individual absorption coefficents within each band;
then you sum results over bands, as usual. You should incorporate pressure broadening and the
CO2 continuum in your calculation of the absorption coefficient, but you may ignore temperature
scaling, so as to keep things simple.

The tables you need are found in the Workbook datasets directory Chapter4Data/ExpSumTables.

For wavenumbers above 15000 cm−1 you can consider CO2 to be non-absorbing. In this part
of the spectrum, you can compute the contribution to the albedo using the analytical Rayleigh
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scattering solution, but the albedo is wavenumber-dependent and you will need to numerically
integrate it weighted by the spectrum of stellar insolation.

Using this procedure, determine the albedo of the planet for both a G star and M star case,
for ps = 1, 10 and 100 bar. (Note that the linear pressure scaling of the absorption coefficients may
seriously underestimate the absorption in the higher pressure cases). How much does Rayleigh
scattering affect the near-IR contribution to the albedo?

Python tips: You can do this problem by modifying the script TwoStreamScatterEsum.py,
replacing the numerical solution of the two-stream equations by the analytical albedo calculation.
You will also need add in code to do the Planck-weighted sum over wavenumbers.

Problem 5.1.26 The dataset subdirectory UVabsorption contains ultraviolet absorption cross sec-
tions for ozone, SO2 and SO2 as a function of wavelength. The cross sections are given in units
of cm2 per molecule. Read these in, convert to m2/kg and plot them. Determine and plot the
ultraviolet absorption optical depth as a function of wavelength for the model ozone profile given
in the text. Do the same for a 2 bar pure CO2 atmosphere on a planet with surface gravity of 10
m/s2. Do the same for a planet with a 2 bar N2 atmosphere mixed with 10 ppmv of SO2, and with
100 ppmv of SO2.

Problem 5.1.27 Grey radiative-convective Equilibrium with solar absorption

In Section ?? we computed the pure radiative equilibrium for a grey gas, including the effects
of atmospheric solar absorption. Using techniques similar to those introduced in Problem 4.1.28,
extend these solutions to the radiative-convective case, in which solar absorption at the surface
can created a troposphere which is adjusted to a dry adiabat. Time-stepping is not required for
the solution of this problem, since you can iterate on the tropopause height until equilibrium is
achieved. However, since the absorbed solar radiation (which must be balanced by OLR) affects
the temperature profile, you can no longer do the problem by fixing the ground temperature at
the desired value and computing the temperature of the rest of the atmosphere. One approach
is to guess the ground temperature, compute the temperature structure and the OLR, and then
vary the ground temperature until top-of-atmosphere balance is achieved. A better approach is to
start from the radiative equilibrium solution in the stratosphere which satisfies top-of atmosphere
balance, guess a tropopause height, impose temperature continuity there, and then compute the
radiative fluxes in the troposphere. You then complete the calculation by adjusting the tropopause
height until the upward infrared flux is continuous across the tropopause. This is equivalent to the
condition that the flux into the troposphere from above be equal to the upward infrared exiting
the troposphere.

Explore the behavior of this system. When does solar absorption substantially cool the
troposphere? When does it eliminate the troposphere entirely? When does increasing the infrared
absorption coefficient simultaneously warm the stratosphere but cool the troposphere?

Problem 5.1.28 Determine the radiative-convective equilibrium for an atmosphere consisting of
1000ppmv of CH4 in 1 bar of N2 subject to a surface gravity of 10 m/s2. The surface is perfectly
absorbing throughout the spectrum. You may ignore Rayleigh scattering. Compare results with
and without atmospheric stellar absorption, for both G and M star cases, with stellar constant
1400W/m2 at the orbit of the planet. To what extent does stellar absorption by CH4 inhibit its
effectiveness as a greenhouse gas?

To do this problem, you will need to use an implementation the homebrew exponential sums
radiation code. The necessary exponential sum table for CH4 is found in the Workbook dataset
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directory Chapter4Data/ExpSumTables. The problem is solved by time-stepping to equilibrium, with
adjustment of ground temperature as described in the text.

Python tips: Modify RadConvEqTrop.py, which time-steps to radiative-convective equilibrium
for a fixed incident solar flux, and has an option to incorporate atmospheric solar absorption.
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6.1 Workbook

6.1.1 Basic surface balance calculations

Problem 6.1.1 Using Eq. ??, show that for an optically thin grey gas the emission and absorption
coefficients ea,ea,top and a+ defined in Section ?? are given by a+ = τ∞ and ea = ea,top = τ∞(T̄ /Tsa)4,
where T̄ is the mean atmospheric temperature given by Eq ??. Compute (T̄ /Tsa)4 and a+/(ea+ea,top)

for the following three cases:

• An all-tropophere ideal gas atmosphere on the dry adiabat, without pressure broadening.

• The same with linear pressure broadening

• The same with linear pressure broadening, but with the temperature patched to in isothermal
stratosphere at high altitudes

Under what circumstances is the radiatively-driven temperature jump at the ground unstable
to convection?

Problem 6.1.2 Surface Global Warming fallacy, Part 1

Suppose we hold the atmospheric temperature fixed on the moist adiabat having a low
level air temperature of 280K as we increase CO2 from 300ppmv to 600ppmv. Assuming a moist
atmosphere, interpolation from the data in Fig. ?? yields e∗ = .314 for the original CO2 and
e∗ = .307 for doubled CO2. Using these values in a surface energy balance model, determine how
much the surface would warm if we ignore turbulent fluxes and assume that the surface balance is
purely radiative. Then, assuming the surface to be dry so that there is no evaporation, re-do the
calculation including sensible heat fluxes. Now assume the surface is wet and include evaporation as
well. For the turbulent fluxes, assume that the surface wind speed is 5 m/s and that the boundary
layer relative humidity is 80%. Keep CD fixed at .0015, and assume that the surface absorbed solar
radiation is 200 W/m2.

Next, for the case including all turbulent fluxes, compute how much the surface warms if
you increase the air temperature by 2K at the same time CO2 is doubled. How much does the
answer change if you leave the CO2 fixed at 300ppmv?

FInally, re-do alll the above calculations assuming the low level air temperature to be 300K,
as is typical of the tropics. For this case, e∗ = .1286 at 300ppmv and e∗ = .1270 at 600ppmv

Summarize all your results in a table. What do you conclude about the importance of
increase in atmospheric temperature vs. the direct effect of CO2 on downwelling radiation into
the surface? Discuss the role of evaporation in determining how much the surface temperature
changes.

Problem 6.1.3 Making ice in the desert

You are out in the desert at night, and you would like to make some ice. There is plenty of
dry air around. You fill a trough with water. The trough is open at the top so evaporation can
occur, but it is well insulated so that no heat is exchanged through the walls. Suppose that the
relative humidity of the air is h and the temperature of the air is Ta. Find the conditions on h and
Ta under which ice can be made, i.e. the conditions under which the surface temperature of the
water can be brought down to freezing if the wind blowing over the water is strong enough. If you
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are free to make the wind as strong as you like, does your answer depend on the surface radiative
cooling factor e∗?

Next, fix Ta at 290K and pick a value of h that allows the temperature to go below freezing
in the strong-wind limit. Compute the value of ρU needed to make ice for e∗ = .3, .5 and .7 . (In
reality, e∗ would be determined by h with drier values lielding higher e∗). First do the calculation
with fixed CD = .0015, and then do it incorporating Monin-Obukhov stable surface layer physics.

The surface of Neptune’s moon Triton and the former planet Pluto are believed to be
composed primarily of N2 ice. The atmospheres of these bodies are so thin that their effect on
infrared radiation can be neglected. Therefore, the temperature of the surface can be determined
from the surface energy balance. At the subsolar point, the surface will heat up until the absorbed
solar radiation equals the energy carried away by blackbody radiation (simply σT 4

g in this case)
plus the latent heat of sublimation of the N2 ice. The saturation vapor pressure of N2 over the
relatively warm subsolar point is much greater than the pressure over the colder parts of the body,
and this drives a mass flow away from the subsolar point, carrying latent heat with it. You may
assume that the albedo is 60% .

What is the surface pressure of N2 at the subsolar point if the latent heat flux is negligible?
(Hint: The gas must be in equilibrium with the solid surface with which it is in contact.) Now
suppose that you are given the flux of mass (per unit area) out of the subsolar point. Compute
the temperature and pressure as a function of this mass flux. Is there a maximum possible mass
flux? Speculate on what processes might determine the mass flux. Can you use the latent heat
flux formula derived in the text for this class of problems?

Some relevant data: The solar constant at Triton’s orbit is 1.5 W/m2; at Pluto’s it is .89
W/m2 on average. The latent heat of sublimation of N2 ice is 2.44 · 105J/kg.

Problem 6.1.4 Consider a Titanlike situation in which the dominant balance at the surface is be-
tween latent and sensible heat fluxes, and all other terms are negligible. Allow for stable boundary
layer effects, so that CD is a function of the Richardson number. Show that if CD is nonzero, the
solution becomes independent of CDU , and derive an expression for the strength of the surface
inversion. Show that there is another solution, with Ri = Ric and CD = 0, and derive an expression
for the strength of the inversion in this case.

Put in numbers corresponding to a CH4/N2 atmosphere on Titan, assuming hsa = .7, U =

5m/s, z1 = 10m and z∗ = .001m, for temperatures in the vicinity of 95K. Do the same for an
Earthlike water/air atmosphere with temperatures in the vicinity of 350K. How valid is the neglect
of infrared radiation in the Earthlike case?

Problem 6.1.5 Consider the surface energy budget in a cold climate, in which evaporation can be
neglected and the budget consists only of solar absorption, infrared, and sensible heat flux terms.
Include the Monin-Obukhov theory for stable surface layers, and set the parameters to Earthlike
values.

Plot the surface energy budget as a function of Tg for fixed Tsa so as to determine the
equilibrium surface temperature. Try this for various values of the absorbed solar radiation (1 −
αg)Sg, and discuss the strength of the inversion and the effect of turbulence suppression. Are there
multiple equilibria? Are there sharp transitions between strong-inversion and weak-inversion cases
as the solar absorption is changed? Repeat this calculation for some much colder and much warmer
values of Tsa, so as to alter the importance of the infrared radiation term.

To keep things simple, you may assume that ea is held constant at a value of 0.2 throughout
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this problem, and that the ground has unit emissivity. Hint: You should first get a feel for the
problem by making a set of energy balance graphs analogous to Fig. ??, but at some point you
may wish to write a simple Newton’s method routine to solve the surface budget equations itera-
tively. You can use the iteration to implement a function Tg(Tsa) using your favorite programming
language.

6.1.2 Evaporation and sublimation

Problem 6.1.6 Re-do the graph in Fig. ?? for parameters which make the surface layer more
stable: smaller U , smaller relative humdity, and/or smaller solar absorption

Problem 6.1.7 Sublimation steals energy that could be more effectively used for melting. Study
this by computing the latent heat flux for the cases in Fig. ?? and determining how much additional
melting could be sustained if this energy went into melting instead. Study the issue further by re-
computing the figure with lower and higher relative humidity. Increasing the wind speed increases
both sensible and latent heat fluxes; does the net effect enhance or retard melting?

Problem 6.1.8 Use the linearized form of the surface energy budget to compute Tg−Tsa in the weak
evaporation limit, and use the resulting expression to discuss how the latent heat flux increases
with temperature. Assume the boundary layer to be governed by neutrally stratified theory, so
that CD can be regarded as independent of temperature. For simplicity, you may also assume
e∗ = .8 throughout this problem, and neglect variations with temperature.

Problem 6.1.9 This problem explores the behavior of the weak evaporation limit when the surface
layer becomes stable enough to significantly suppress turbulence. You may assume that the atmo-
sphere is also cold enough that the buoyancy is determined by temperature alone, and is unaffected
by the concentration of the condensible vapor. First determine the ground temperature Tg,o at
which turbulence is completely suppressed. You do this by setting CD = 0 in the surface balance
equation and finding an expression for the resulting radiatively-determined Tg. Then use this value
to determine the circumstances under which Ri = Ric for this temperature. This determines when
the assumption CD = 0 is consistent. Finally, assuming this condition to be satisfied for some
given air temperature Tsa,o, discuss how Tg varies as Tsa is increased beyond Tsa,o (holding other
parameters fixed), retaining terms out to second order in Tsa−Tsa,o. Use the result to say how the
evaporation behaves as a function of temperature in the weak evaporation limit. Illustrate your
result by putting in some numbers characteristic of a cold Earthlike climate with weak absorbed
solar radiation, with an atmosphere consisting of air and water vapor. For simplicity, you may
assume e∗ = .8 throughout this problem, and neglect variations with temperature.

Problem 6.1.10 As discussed in the text, the limiting strength of the inversion in the strong-
evaporation limit is given by the temperature To where FL(Tsa, To) = 0, i.e. where the latent heat
flux vanishes. Using the expression for FL, show that this occurs when psat(To) = hsapsat(Tsa), where
hsa is the relative humidity of the air at the upper edge of the surface layer. Use the simplified
exponential form of Clausius-Clapeyron to derive an expression for Tsa − To. How rapidly does
this increase with Tsa? Use the results to put an upper bound on the growth of evaporation with
temperature in the strong evaporation limit. Put in some numbers corresponding to Titan, and to
a very hot Earth.
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6.1.3 Ice

Problem 6.1.11 Determine equilibrium ice thickness for a slab of ice which allows solar penetration
into the ice as discussed in text, but with the following extensions: (1) Assume that a geothermal
heat flux Fi is applied at the base of the ice, and (2) Allow for the possibility that the ice is so
thin or transparent that some solar radiation penetrates the ice and escapes into the ocean below.

First do the calculation assuming that solar radiation that leaves the bottom of the ice is
carried away in the ocean and does not need to re-escape through the ice. Then say what happens
if the energy is absorbed locally and heats the water below the ice, leading to the heat being
delivered to the base.

For the purposes of this problem, you may neglect the effects of sublimation and accumula-
tion at the top of the ice.

Note that aside from its possible application to tropical ice on Snowball Earth, this ”thin,
clear ice” calculation applies to ice-covered Antarctic Dry Valley lakes, which some see as a modern
analog for Snowball Earth tropical conditions.

Problem 6.1.12 Consider sea ice of thickness d on a Snowball Earth, in a region where the surface
temperature is in equilibrium with an absorbed solar flux of 50W/m2. The ice has unit infrared
emissivity. What is the surface temperature ignoring the heat flux through the ice? Then, assuming
that the base of the ice has a temperature of 270K, compute the surface temperature as a function
of d, taking into account the heat flux through the ice. You may assume that the temperature
profile within the ice is in equilibrium. Ignore the effects of solar flux penetration into the ice.

Problem 6.1.13 In the text we determined the effect of solar flux penetration into ice assuming
the decay rate to be exponential. In reality, the decay rate is weaker than exponential, because
of wavelength dependence of the absorption coefficient. Re-do the calculation assuming that the
solar flux decays according to a power law of the form 1/(1 + a · zb), where z is distance from the
surface and b > 0 is a decay exponent. You may assume the ice to be infinitely thick. What is the
deep ice temperature?

Problem 6.1.14 The current permanent glaciers on Mars are made of water ice, but suppose that
at some past time Mars had CO2 ice glaciers. Let the thickness of the glacier be h at some point.
In order for melting at the base to be possible, the basal presure has to be above the triple point
pressure. What is the critical height? Suppose that the surface temperature of the glacier is 200K,
which is approximately in equilibrium with a 1.5 bar CO2 atmosphere. Assuming the height to be
above the critical height, compute, as a function of height, the magnitude of geothermal heat flux
needed to melt the base. At 200K the thermal conductivity of CO2 is is about 0.5 W/m ·K.

Basal melting is important, because it lubricates the glacier and allows it to surge into
regions that are warm enough to ablate it rapidly.

6.1.4 Radiative-convective equilibrium coupled to a surface budget

Problem 6.1.15 In Problem 5.1.27 you computed the radiative-convective equilibrium for a grey
gas atmosphere assuming that the surface coupling was so strong that the ground temperature Tg

was always equal to the overlying air temperature Tsa. Using the same basic solution approach,
generalize the problem to the case in which Tg differs from Tsa, and the relation between the
two temperatures is determined by the surface energy balance. To keep things simple, you may
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assume that the surface balance involves only radiative and sensible heat fluxes. Further, you
may assume that the atmosphere is transparent to solar radiation. Note that even though the
atmosphere absorbs no solar radiation, you can’t do this problem by fixing the surface temperature
and computing the OLR afterwards, since the surface budget depends explicitly on the surface
absorbed solar radiation (1−αg)Sg. You will need to use the solution technique outlined in Problem
5.1.27.

Note that when doing convective adjustment in a problem like this, the convective adjust-
ment should be based on the low level air temperature Tsa, not the ground temperature. The
ground cannot convect upward! Heat must first be transferred to the air by turbulent and ra-
diative fluxes. As long as the troposphere doesn’t disappear completely, one doesn’t need to do
anything to explicitly take this heat transfer into account. It is implicitly mixed throughout the
troposphere by convection, and the transfer of solar heating of the ground into the troposphere is
implicitly taken care of when one imposes the condition of net (solar plus IR) radiation balance
at the tropopause.

Assume R/cp = 2
7
, and that the grey absorption coefficient increases linearly with pressure.

Fix the absorbed solar radiation at 250 W/m2 and explore the behavior of the system as a function
of ρCDU and τ∞. At large ρCDU the solution should reduce to the previous one, with Tg ≈ Tsa.
How does the surface budget affect the tropopause height? How much does it affect Tsa? How
much does it affect the stratospheric temperature? Make sure to cover both optically thick and
optically thin cases. Discuss the magnitude of the surface temperature jump in the optically thin
(Marslike) case. Finally, look at the warming in Tg and Tsa you get when you increase τ∞ from 1
to 1.1 . How important is the surface budget in determining the amount of low-level warming?

Problem 6.1.16 Extend the inquiry in Problem 6.1.15 to the real-gas case. Specifically, use the
homebrew exponential sums radiation code to compute radiative-convective equilibrium for CO2

mixed with dry air on the dry air adiabat. You may ignore temperature scaling of the absorption
coefficients and the effects of atmospheric solar absorption. Include only radiative and sensible heat
terms in the surface budget, and assume a constant CD. You solve the problem by time-stepping
to equilibrium in a fashion almost identical to that described in Section ??. The only exception is
that instead of adjusting Tg at each time step so as to move towards a state of top-of-atmosphere
balance, you adjust the air temperature Tsa and then determine the corresponding Tg by solving
the surface energy balance equation using the downwelling infrared from the atmosphere as one of
the inputs.

Carry out a calculation of this type, and explore how the surface temperature, air temper-
ature, stratospheric temperature and tropopause height depend on the surface wind speed. Try
some very low CO2 values where the atmosphere is very optically thin, and try partial pressures up
to 100mb, where the atmosphere is more optically thick. You can keep the surface air pressure fixed
at 1000mb for these calculations, and assume Earth gravity. Remember that convective adjustment
should be done based on Tsa, not on Tg.

If you can run the ccm radiation code, you can alternatively do this problem by timestepping
a ccm-based radiative-convective model to equilibrium. In that case, you can include the joint effects
of CO2 and water vapor, determing the latter assuming a fixed relative humidity. In that case, it
also makes sense to include evaporation in the surface budget.

Python tips: The radiative-convective calculation for the homebrew model is done in the
Chapter Script RadConvEqTrop.py, and that for ccm is done in ccmRadConv.py . Both are included in
the Chapter Scripts directory for Chapter ??. These scripts do not include a surface balance, but
need only slight modifications in order to allow Tg to be computed by solving the surface balance
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at each time step.

Problem 6.1.17 Surface Global warming fallacy, Part 2

In this problem you will extend the inquiry of Problem 6.1.2 by simultaneously determining
the change in ground temperature and air temperature when CO2 is increased. This is done by
simultaneously satisfying the top-of-atmosphere and surface balance conditions. We’ll do this based
on real-gas radiation calculations from the ccm radiation model incorporating both CO2 and water
vapor, but to keep things simple we’ll employ an all-troposphere model so that the calculations
can be done using polynomial fits to the radiation computations. With this approach, you don’t
need to be able to run the ccm model yourself, but more importantly the simplification makes it
much easier to understand what is going on.

In Table ?? we gave polynomial fits to OLR(Tg, CO2) for fixed relative humidity, assuming
that Tg = Tsa. With the surface budget incorporated, we must allow the two temperatures to differ,
and because the atmosphere is not completely optically thick, this affects the OLR. We can write
the OLR using a variant of Eq. ?? as follows

OLR(Tsa, Tg) = OLR(Tsa, Tsa) + (1− a+(Tsa))(σT 4
g − σT 4

sa) (6.1)

where a+ is the atmospheric absorption factor discussed in the text. The first contribution to OLR,
i.e. OLR(Tsa, Tsa), is obtained using the polynomial fit in Table ??. This function, as well as a+,
depends on CO2 in addition to temperature. To keep things simple, assume the atmosphere to
be transparent and nonscattering, so that the OLR is in equilibrium with an absorbed solar flux
(1− αg)S. This balance condition gives you one relation between Tg and Tsa

The surface balance condition imposes an additional relation between Tg and Tsa, which
closes the problem. This is the same surface balance condition as discussed in the text, and which
you used in Problem 6.1.2. It requires that you know the surface cooling factor e∗, and the way
it depends on temperature. In the surface budget, you may assume that CD is fixed at 0.0015 .
Include both sensible and latent heat fluxes in your surface budget.

To complete the calculation, you need to be able to determine how (1 − a+) and e∗ vary
as a function of Tsa and CO2. Tabulations giving the variation are provided in the datasets
ccmTransWet.txt and SurfEstarWet.txt in the Workbood datasets directory for this chapter. These
were computed using the ccm radiation model with 50% relative humidity aloft. Values for arbitrary
temperature and CO2 within the range of the table can be found using interpolation.

The solution procedure is simple. You guess Tsa, and then solve for Tg using the surface
energy balance. Solving for Tg requires a small Newton’s method iteration if you use the full form
of the surface budget, but if you are in a regime where the surface budget can be linearized then
you can actually do this step analytically, as discussed in the text. Either way, once you have Tg,
you can compute the OLR. You then iterate on Tsa until the top-of-atmosphere budget is satisfied.

Note that when (1−a+(Tsa)) is small or when the surface coupling is so strong that Tg ≈ Tsa,
then the OLR expression allows Tsa to be determined nearly independently from the surface budget.
Except for optically thin atmospheres with weak coupling, the surface budget usually imposes only
a small correction on the Tsa you get by ignoring the second term in the OLR expression above.

Write a program which implements this procedure. First fix CO2 at 300ppmv , and find values
of (1− αg)S that give you values of Tsa near 260K, 280K and 300K with evaporation included and
a wind U = 5m/s. Then double CO2 and recompute the temperatures. How much of the increase
in Tg is due to the increase in the air temperature? How much of the increase is due to the direct
effect of CO2 on downwelling radiation for fixed air temperature? Compare the results with the
temperature increase you get by fixing Tg = Tsa.
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Then, re-do the series of calculations for a case with significantly weaker winds and a case
with significantly stronger winds. Finally, with U = 5m/s, how do your results change if you
eliminate the latent heat fluxes, as would be the case over a dry surface?

If you like you can also do this problem by time-stepping the full ccm calculation to radiative-
convective equilibrium. See Problem 6.1.16 for hints on how to do that.

Python tips: Remember that the interp class in ClimateUtilities makes polynomial inter-
polation easy. To interpolate to an arbitrary temperature and CO2 from the table, first do an
interpolation to the temperature you want for all the CO2 columns, and then do an interpolation
in log(CO2). The transparency and surface cooling coefficients are computed in the Chapter Script
ccmSurfrad.py, but if you recompute the coefficients with different gravity, surface pressure or
humidity you will need to make sure to use an OLR polynomial which is computed consistently.
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7.1 Workbook

Python tips: The Chapter Scripts solar.py, plot solar.py and FluxExplorer.py will be use-
ful in doing the problem in this Workbook section. The script solar.py includes routines to
carry out the integration needed to determine the season angle as a function of time, and can
be imported into other scripts that need insolation calculations. The function getOrbit(...)
defined in FluxExplorer.py retrieves the orbital parameters for Earth from a data file given the
time expressed in thousands of years relative to the present.

Some of the problems call for use of a graphics tool which has not been previously introduced,
namely contour plotting. In the Python courseware, the contour plots can be done using the
function contour(...) in the ClimateUtilities module.

7.1.1 Distribution of insolation

Problem 7.1.1 Using Eq. ??, estimate the duration of daylight at the latitude where you are
living, at the time of year at which you are solving this problem. Use the current obliquity of
Earth, which is 23.45o. Compare your results with observations, preferably taken by yourself.
Using Eq. ??, estimate how much solar power could be generated by a one square meter 10%
efficient solar panel pointed straight up at the sky at this time, assuming that 80% of the solar
energy incident on the atmosphere makes it through to the ground. Thirty thousand years ago,
the obliquity was 22.25o. How would your results have been different at that time?

You may make use of the approximation that the length of the day is short compared to the
length of the year, and approximate the orbit as being circular.

Problem 7.1.2 Determine the latitudinal pattern of diurnally averaged insolation for a planet with
small but nonzero obliquity, assuming that the planet’s length of day is short compared to its year.
Assuming a circular orbit, average this over the course of a year to obtain the annual mean inso-
lation pattern. Compare the annual mean results to the more precise numerically determined flux
factor for obliquities of 10o, 20o and 30o. Make sure to retain enough terms in your approximation
to see the lowest order deviation from the zero obliquity case.

Problem 7.1.3 Estimate what the summer temperature of Antarctica would be if you took away
the ice sheet, leaving bare rock. Use the polynomial OLR fit in Table ?? to determine the infrared
cooling, and neglect horizontal heat redistribution by dynamical heat transports.

Problem 7.1.4 The Earth’s obliquity fluctuates between 22o and 24.5o on a time scale of roughly
40,000 years. Assuming that the albedo is 20%, compute the latitudinal profile of the difference in
absorbed solar radiation between these two states. Convert these fluxes into temperature change
using a climate sensitivity of 2W/m2K. This gives you an estimate of the temperature change
over extensive oceans, including the effect of water vapor feedback but neglecting the additional
sensitivity due to possible melting of sea ice or land glaciers.

Problem 7.1.5 High obliquity waterworlds

This problem examines the climate of high-obliquity waterworlds. These are of interest
because a planet without a large moon such as Earth’s would generally pass through high obliquity
episodes at various times. Would such planets be habitable?
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Consider a waterworld planet in a circular orbit, whose thermal response time is sufficiently
long that the seasonal cycle is weak and the surface temperature responds mainly to the annual
average insolation. The albedo is 0.2, and the local solar constant is L~. The planet has an
Earthlike atmosphere, whose OLR can be approximated using the polynomial fit in Table ??. For
a planet in an Earthlike orbit, with L~ = 1370W/m2, plot the surface temperature as a function
of latitude for obliquities of 45o, 50o, 55o, and 60o, assuming a CO2 value of 1000 ppmv. Then, for
a fixed 60o obliquity, examine the range of values of CO2 and L~ which yield a globally ice-free
climate. Determine the threshold L~ below which the planet would definitely be in a Snowball
state (as indicated by below-freezing temperatures everywhere), with CO2 at 105ppmv.

For the purposes of this problem, you may neglect horizontal heat transports and assume
the planet to be in equilibrium with the absorbed solar radiation at each latitude.

Problem 7.1.6 The obliquity of Mars undergoes more extreme variations than that of Earth.
Consider a time when Mars has an obliquity of 55o. Assume that the planet has no oceans,
and that the polar glaciers have dissipated so that the albedo is 20% at the poles. What is the
temperature of the summer pole, assuming that there is no greenhouse effect and that the polar
temperature is in equilibrium with the local solar absorption (i.e. that there is no horizontal heat
transport)? If you put a water ice-cap with 60% albedo there, would it melt or stay below freezing?
How cold would it be? (In reality, even an ice cap that is too cold to melt may sublimate and
be redeposited elsewhere on the planet). For the glaciated case, use the OLR data in Fig. ?? to
determine the surface pressure of a pure CO2 atmosphere that would be needed in order to bring
the glacier to the melting point.

For this problem, you may assume Mars to have a circular orbit, though in reality the
eccentric orbit of Mars will episodically render one of the summer poles much warmer than the
estimates obtained here.

Problem 7.1.7 Consider a planet with a solid surface, having an atmosphere which is thick enough
to average out the diurnal cycle but which has a response time short compared to the length of the
planet’s year. In this case, the temperature at any given latitude is in equilibrium with the absorbed
solar flux computed from Eq. ??, provided that the lateral heat transport in the atmosphere is
neglected. This calculation also yields a reasonable approximation to what the temperature would
be in the interior of large continents, in the absence of lateral heat transports.

Using the OLR polynomial fit for fixed relative humidity in Table ??, determine the tem-
perature profile of this planet at the solstice and equinox, assuming Earth’s present solar constant
and an obliquity of 23o. Do the calculation for a rocky planet with albedo 0.2, and a Snowball
state with albedo 0.6, and a snow-covered Snowball state with albedo 0.8. Examine how the re-
sults change as you increase the CO2 from 100 ppmv to 105ppmv (100 mb). Then, fix the CO2 at
1000ppmv and look at how the temperature pattern changes as you vary the obliquity from 0o to
90o.

You should cut off the calculation where the temperature falls below 200K, or goes above
350K, since that is beyond the range of validity of the polynomial fit. In reality, the hot cases
would go over into a runaway state, if the relative humidity continued to be constant and if the
unrealistic neglect of lateral heat transport really were valid.

Problem 7.1.8 Triton

Neptune’s moon Triton has probably the most unusual seasonal cycle in the Solar System.
Like most moons, it is tide-locked to its planet, in Triton’s case with a period of 5.67d (in the
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retrograde direction, though that does not matter for the purposes of this problem). Uniquely
among moons, however, its orbit is in a plane which is quite steeply inclined to Neptune’s equator.
The orbital plane precesses about the normal to Neptune’s orbital plane with a period estimated to
be about 637 Earth years, at the same time that Neptune orbits the Sun with a period of 165 Earth
years. Putting the two effects together, the latitude of the subsolar point follows the empirical
formula

sin δ = .4636 cos(ao − a1t) + .3495 sin(ao − bo + (b1 − a1)t) + .0251 sin(ao + bo − (a1 + b1)t) (7.1)

where ao = 1.332, a1 = .006650, bo = .3229, b1 = .0001721. In this formula, angles are given in radians
and t is the time given in Earth years AD. Thus, the formula can be used to determine the latitude
of the Sun on Triton occurring at an actual date. Because Triton is an icy body rich in N2 and
CH4 ices that can warm up sufficiently to give off significant amounts of gas when illuminated, the
complex motion of the subsolar point leads to a rich variety of atmospheric and surface evolution
features on Triton.

The solar constant at Neptune’s orbit is 1.51W/m2. Using Eq. ??, plot the time series of
diurnally averaged flux on Triton at a both poles, at the equator, and at latitudes of ±45o. Plot
the time series of surface temperatures that would be in equilibrium with these fluxes, and use the
Clausius Clapeyron relation to plot the saturation vapor pressure of N2 and CH4 that would be in
equilibrium with these fluxes.

Because heat takes time to diffuse through a solid, to a first approximation the subsurface
temperature can be determined by averaging the surface temperatures obtained above over longer
periods; the longer the averaging period, the deeper the layer the temperature corresponds to, with
averaging times of an Earth year yielding the ice temperature at around a meter of depth, increasing
to around 30m for an averaging period of 100 Earth years and around 100m for 1000 Earth years.
Plot time series of the averaged temperature at selected latitudes, using averaging periods of one,
ten, a hundred and a thousand Earth years. Also show the N2 and CH4 saturation vapor pressures
at these periods. The pressures are of interest because when sufficiently high pressures build up
it can fracture ice and lead to cryovolcanism. Note that the subsurface temperatures you have
estimated are underestimates of the actual subsurface temperature, since the penetration of solar
radiation into ice can lead to considerably elevated temperatures, as discussed in Section??.

Problem 7.1.9 Path of the Subsolar Point

Show that for a nonrotating planet with a latitude-longitude coordinate system based on an
axis with obliquity γ, the longitude λo of the subsolar point is given by

tan κ = (cos γ)(tan λo) (7.2)

where κ is the season angle. When solving this formula for λo, one must take care to choose the
branch of tan−1 which yields an angle which increases smoothly from 0 to 2π radians in the course
of the orbit. Hint: Project the equatorial circle, with all its longitude labels, onto the plane of the
orbit. The result will be an ellipse, labeled by longitude. This ellipse rotates along with the season
angle, and you now only need to find the longitude of the point where the ellipse intersects a line
segment extending from its center to the center of the sun.

Discuss the limit of zero obliquity, as a check that the equation is behaving sensibly. What
should the behavior be when the obliquity is close to 90o? Compare your expectation with the
behavior of the above equation for obliquity close to 90o.

If the planet is rotating about the axis with constant angular speed Ω, then the longitude
of the subsolar point becomes λ~ = λo(t)− Ωt.
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The solar day is defined as the time elapsed between successive local noons – i.e. the time
between successive crossings of the local longitude by the subsolar point. Note that this is inde-
pendent of latitude. Find a formula for λ~(t) for the case γ = 0.. Show that if the year contains n

stellar days, then it contains n− 1 solar days.

Find an approximate expression for the duration of the solar day assuming the duration of
the stellar day to be short compared to the orbital period. Use this formula to determine how
Earth’s solar day would vary over the year if its orbit were circular with a period of 365.25d, given
a present stellar day of 86164s. Then, numerically determine the sequence of solar day lengths for
a planet in a circular orbit with period 400d and a stellar day of 100d. Show results for obliquities
of 0o, 20o and 45o.

Using the formula for λ~ together with the formula for the latitude of the subsolar point
(δ(t)) given in the text, plot the trajectory of the subsolar point in the longitude-latitude plane
for the following cases, assuming the planet to be in a circular orbit: (a) A planet with an orbital
period of 400d and a stellar day of 40d, and (b) A planet with an orbital period of 400d and a
stellar day of 100d. Show results for obliquities of 20o, 45o and 80o.

Problem 7.1.10 Consider a planet in a circular orbit, with an orbital period of 400d and a stellar
day of 100d, with 45o obliquity. Use the results of Problem together with the expression for the
zenith angle in Eq ?? to make a contour plot of the diurnally averaged flux factor in the longitude-
latitude plane, for each of the three solar days in the planet’s year. Then show the annual-average
flux factor. Should the annual mean depend on longitude? How do these results compare with
what you would get by ignoring within-day variations in the latitude and longitude of the subsolar
point, and simply averaging over the hour angle?

Hint: You evaluate the time-dependence of cos ζ by computing δ(t) and λ~(t) and plugging
the values into Eq. ??, writing the hour angle as h = λ − λodot(t), where λ is the longitude. The
time average at any given latitude and longitude can no longer be done analytically, and must be
done instead by numerical quadrature. Remember to zero out the flux for times when the sun is
below the horizon.

Problem 7.1.11 A walk in the sun

As preparation for doing this problem, first read Geoff Landis’s story ”A Walk in the Sun”

Astronaut Katie Mulligan has crashed on the Moon, right at the subsolar point. She can
be rescued, but it will take 28 days (a Lunar day) for the rescue mission to get there. At the time
of the crash, the latitude of the subsolar point is φo. Her space suit can maintain life support over
that time period but it is solar powered and has essentially no battery storage capability, so she
will need to stay in sunlight for the whole time. How fast does she have to walk if she chooses
to walk along her initial latitude circle? Suppose instead she walks along a longitude line directly
toward the summer pole and waits there. Under what circumstances is this a better strategy?

Recall that the Moon is tide-locked to the Earth and orbits very nearly in the Earth’s
equatorial plane. Therefore, it shares Earth’s obliquity. Note also that the latitude of the subsolar
point will change somewhat in the course of a Lunar day, so you should take this into account,
though the effect is slight.

7.1.2 Thermal Inertia

Problem 7.1.12 Climate sensitivity and equilibration time
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In circumstances where the thermal inertia is determined by the top-of-atmosphere energy
budget, the radiative damping coefficient b = dOLR/dT is the same coefficient that determines
climate sensitivity. This observation links the ultimate amount of warming due to CO2 increase
with the time it takes to approach this equilibrium. All other things being equal, a more sensitive
climate will also have a greater time lag between forcing and response. This link was first pointed
out by James Hansen in the 1980’s.

Considering only annual-mean conditions, suppose that the Earth is in equilibrium at a
temperature To, for some given CO2 concentration. Then, CO2 is instantaneously doubled, leading
to a reduction in OLR of 4 W/m2 for any given temperature; assume that this leaves the slope b

unchanged. Find and plot the subsequent time evolution of temperature for a standard case with
b = 2W/m2K and for a case with stronger amplifying climate feedbacks having b = 1W/m2K. In
both cases, assume a mixed layer depth of 50m.

Problem 7.1.13 Solve the problem

ρocpoH
dT

dt
= (1− α)S − σT 4 (7.3)

analytically, for arbitrary initial temperature To. Analyze the behavior of the system, and compare
the analytical results to the approximate results obtained by either linearizing about the equilibrium
temperature or holding the infrared cooling rate fixed at σT 4

o . Hint: This is essentially an intricate
exercise in the use of partial fractions. You need to factor something of the form 1/(A + T 4) into a
sum of four simpler fractions. You can plot the results analytically if you plot t(T ) instead of T (t).

Note that this problem can be solved numerically by ODE integration with only a trivial
amount of programmer time, and microseconds or less of computer time. It probably takes less
computer time to solve the problem numerically than it does to evaluate the expression yielded by
the analytic solution. However, it is good to exercise ones’ skills at algebraic manipulation from
time to time.

Problem 7.1.14 Thermal inertia for a shallow troposphere

When the tropopause is high, then convective mixing allows heat to be stored in essentially
the entire mass of the atmosphere. When the convection extends only over a shallow layer, however,
less mass is available to store heat and the thermal inertia is correspondingly lower. As a simple
example of this consider a dry atmosphere with an isothermal stratosphere. Specifically assume
the troposphere is on the dry adiabat from the ground up to the point where the temperature
equals a fixed stratospheric temperature Tstrat, and is isothermal at higher altitudes. Compute the
thermal inertia coefficient µ = dE(T )/dT for this atmosphere, and discuss how it varies with T .

Problem 7.1.15 Latent heat and thermal inertia

In the text we determined the thermal inertia of a dry atmospheric column using the dry
static energy. If the atmosphere instead is in equilibrium with a condensible reservoir such as a
water ocean, then it takes more energy to increase the surface temperature by 1K because one has
to take into account the increase in latent heat storage of the atmosphere. This problem considers
this effect in two simple limits.

In the first limit, we consider the condensible substance to be dilute, as is the case for water
vapor on the present Earth. In this case we can use the dilute moist static energy formula given
in Section ??. Suppose that the stratosphere has negligible heat storage, and that the moist static
energy can be considered constant for the purpose of computing thermal inertia. Suppose that
the condensible substance is saturated at all heights. By evaluating the moist static energy at
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the ground, find an expression for the energy storage as a function of surface temperature. The
thermal inertia coefficient µ is the derivative of this with respect to surface temperature. Evaluate
this at 260K, 280K, 300K and 320K for saturated water vapor on Earth. Evaluate it for saturated
methane in an N2 atmosphere on Titan, for a suitable range of temperatures. Express your answer
in terms of an equivalent liquid water mixed-layer depth. How do the values compare with what
you would get in the same situations using dry static energy? Note that when the atmosphere is
unsaturated, the moist static energy per unit mass isn’t constant, and the determination of the
thermal inertia coefficient is correspondingly more complicated.

In the opposite extreme, we take an atmosphere that is on the single-component condensing
adiabat, with temperature profile given by the dew-point formula. This is an appropriate model
to use in conjunction with the formation or sublimation of a CO2 ice cap in the polar winter and
spring of Present Mars or Early Mars, and it can also apply to a steam atmosphere undergoing
a runaway greenhouse. For this kind of atmosphere, the energy storage is just the latent heat
times the mass per unit area of the atmosphere, which by Clausius-Clapeyron can be written as
a function of surface temperature. Find the thermal inertia coefficient by taking the derivative
of heat storage with respect to surface temperature. How does the gravity affect the thermal
inertia? Evaluate the thermal inertia coefficient as a function of temperature, and express in terms
of equivalent mixed layer depth for a CO2 atmosphere under Mars gravity. Do the same for a pure
water vapor atmosphere under Venus gravity, at temperatures up to 400K.

Problem 7.1.16 Atmospheric thermal response time over a deep mixed layer

For an atmosphere over a very deep mixed layer the surface temperature can be considered
essentially fixed at a specified temperature To as the atmospheric temperature varies in the course of
the seasonal or diurnal cycle. Find an expression for the thermal rexation time appropriate to this
case. Aside from using a thermal inertia coefficient appropriate to the atmopheric mass, the only
difference with the calculations of relaxation time carried out in the text is in the form of the flux
coefficient b, which determines how the atmospheric heating or cooling depends on the atmospheric
temperature. In this case the atmospheric heat budget involves not only OLR(T ), but also the
surface flux terms. The latter are treated using the linearized flux coefficients discussed in Chapter
?? (see esp. Table ?? and the associated discussion) The linearization should be done about an
atmospheric temperature chosen such that the atmosphere is in equilibrium. In determining this
temperature, allow for the effect of a time-independent absorbed solar flux in the atmosphere.

Discuss the behavior of the relaxation time as To and surface wind is varied. Note particularly
the implications of the increasing importance of latent heat flux as To increases. How does the
atmospheric absorbed solar radiation affect the result?

To keep this problem simple you may assume that the thermal inertia coefficient µ has its
dry adiabatic deep-troposphere value cpps/g. At warmer temperatures where latent heat flux is
significant, for consistency one should actually consider the effects of latent heat storage in the
atmosphere. When the atmosphere is saturated, this can be done using the results of Problem
7.1.15, but for an unsaturated atmosphere finding a proper formulation is quite challenging, since
the moist static energy is no longer uniform and the effect of moisture depends a lot on whether
or not it is condensing.

Use your estimate of the relaxation time together with the analytic solution for a mixed-layer
seasonal cycle driven by sinusoidally varying forcing to estimate the amplitude of the seasonal cycle
of atmospheric temperature at latitude 45o over a deep mixed layer. Assume that the atmosphere
absorbs 20% of the incident solar radiation. Determine the phase lag between the insolation and
the temperature.
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Problem 7.1.17 Sea ice growth and decay

The growth and decay of a sea ice layer provides a form of thermal inertia, since the latent
heat of fusion must be taken into account in determining the heat storage in the atmosphere-ocean
column. Assume that all freezing takes place at the sea ice base, and that the diffusion equation
is nearly in equilibrium within the ice layer so that the temperature profile is linear. Suppose the
base has temperature Tf and the ice surface has temperature Ts, both of which are constant. As an
idealization, assume that all the heat released released by freezing at the base must be taken away
by diffusing through the ice layer, and that this is the limiting factor in ice growth. (In reality
much of the heat in the early stages escapes through open-water leads in the ice layer, and it is
also possible that ocean currents could take away some of the heat.) Show that the growth of the
ice thickness h is governed by the equation

ρiLf
dh

dt
+ Φo = κT

Ts − Tf

h
(7.4)

where κT is the thermal conductivity, Lf is the latent heat of fusion, ρi is the density of the ice
and Φo is the heat flux delivered to the ice base by geothermal heating or other means. Generally,
Tf can be taken to be the freezing point of sea water.

Find the solution to this equation. With Φo = 0, how long does it take for ice to grow
to a thickness of 5m for Tf − Ts = 5K? For Tf − Ts = 20K? Next set Φo to the present Earth
geothermal heat flux, and determine how long it takes to reach the equilibrium ice thickness for a
typical annual mean Snowball Earth polar temperature of 200K, and a typical Snowball tropical
temperature of 240K.

The preceding coniderations determine how much ice is built up during the growth season.
The resulting thermal inertia comes into its own during the melt season, which has different physics
since ice can melt from the top. Using the surface energy balance models developed for melting ice
in Section ??, determine the time required to melt a layer of sea ice of thickness d, as a function
of the surface solar flux and the air temperature. You may assume that the albedo of melting
ice is 0.5, and that the wind speed is 5 m/s. Discuss the difference between melting rates with
Monin-Obukhov vs. neutral surface layer physics. Put in some numbers corresponding to polar
summer conditions, and determine how long it takes to melt a 5 m layer.

7.1.3 The diffusion equation and its uses

Problem 7.1.18 You are spending the winter inside a hemispherical igloo with radius of 3m. The
walls are 0.25m thick. The floor is insulated with caribou skins, so that the heat loss throught
the floor can be neglected. The leakage of air through the entrance is also negligible. The outside
temperature is 220K. You and your companion put out a total of 300W on average (because of
all the food you eat), and you burn a seal oil lamp that puts out another 100W . What is the
temperature inside the igloo if it is made of snow? If it is made out of blocks of ice?

Problem 7.1.19 Numerical methods for the diffusion equation

In this chapter, we made use of some new numerical techniques which have not been intro-
duced earlier, namely the methods for numerical solution of the time-dependent diffusion equation
in one dimension. Read about methods for the diffusion equation in Numerical Recipes. For the
calculations we need, the simplest algorithm (second-order centered finite differences, with leapfrog
or midpoint-method time stepping) will suffice. Implement the method in the computer language
of your choice. First, test your implementation on a basic configuration consisting of an ice layer of
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thickness 100m and uniform diffusivity, resting on a water layer which keeps the lower boundary of
the ice at a fixed temperature of 271K. Impose an insulating boundary condition (∂zT = 0) at the
upper boundary, and examine the approach to an isothermal state assuming the ice temperature
is initially 200K independent of depth, except for the lower boundary point.

Next, try a few extensions of the basic problem. Re-do the calculation assuming that
there is a 5m deep layer of low-diffusivity snow on top of the ice, with the insulating boundary
condition applied at the snow surface. Describe how the time evolution changes, concentrating
on the time required for the ice temperature to reach equilibrium. Finally, replace the insulating
upper boundary condition with the assumption that the surface loses heat by radiating at a rate
σT 4

s , where Ts is the surface temperature. What equilibrium surface temperature do you expect
with and without the snow layer? How long does it take to reach equilibrium? Plot a time series
of the heat transfer from the ocean into the ice, and use this to estimate the rate at which the
ice thickness would grow if you hadn’t artificially kept the thickness fixed. Python tips: The basic
solution of the initial value problem for the diffusion equation is implemented in the Chapter Script
diffusion.py.

Problem 7.1.20 Suppose that the temperature at the subsolar point on the Moon is initially in
equilibrium at 370K. Suddenly, a lunar eclipse occurs, which eliminates the input of solar radiation.
Use the diffusion equation to describe the temperature drop over the course of the next several
hours, assuming (unrealistically) that the initial state is isothermal at 370K. As a crude estimate
of the night-time temperature of the Moon, compute how much the point would cool down if it
remained unilluminated for 14d. As a somewhat more realistic model of lunar cooling, assume
instead that the subsurface is isothermal at 370K only down to a depth h, and that below that it
is isothermal with a temperature of 250K. Describe how the time series of temperature over 14d

depends on h. You can estimate an appropriate value of h for the actual Moon by estimating how
far heat diffuses into the lunar regolith in the course of a Lunar day (about 14d). What is this
depth?

Problem 7.1.21 Diurnal cycle on rocky airless planets

Solve the diffusion equation for a thick layer of the crust of a nearly airless rocky planet,
subject to radiation from the surface at a rate σT 4

s and insolation by the actual diurnally and
seasonally varying time series of insolation at a latitude of 45o. You may assume an insulating
boundary condition at the lower boundary of the rock layer. If you make the layer thick enough,
your result will not depend on the layer thickness. Based on the basic behavior of heat diffusion,
how thick do you think the layer needs to be? Test your estimate against the actual behavior of your
numerical calculation. For the purposes of this problem, you should put in numbers corresponding
to the solar constant, obliquity, albedo, length of day and length of year corresponding to Present
Mars, but you may assume the orbit to be circular. You may assume a constant diffusivity
corresponding to the dry rock of your choice.

How does the amplitude of the surface diurnal cycle compare to the surface seasonal cycle?
At what depth do you see a significant diurnal cycle? At what depth do you see a significant
seasonal cycle? At what depth is the temperature essentially constant over the course of the year?
How does the deep subsurface temperature compare with the surface temperature that would be
in equilibrium with the annual mean absorbed solar radiation? Why do the two numbers differ?

Problem 7.1.22 Jupiter’s moon Europa has essentially zero obliquity. It shares Jupiter’s year
and solar constant, and since it is tide locked to Jupiter its day is equal to its orbital period
about Jupiter, or 3.55d. Jupiter’s orbit is essentially circular. Europa’s crust is made largely of
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water ice, and there is essentially no atmosphere. Its albedo is about 0.67. Numerically solve the
diffusion equation for a point on the equator of Europa, and describe the time series of surface
and subsurface temperature. What is the deep-ice temperature? You may use an insulating lower
boundary condition.

7.1.4 Orbital mechanics and eccentricity

Problem 7.1.23 The planet Gliese 581d has an orbital period of 66.8 d (1d ≡ 86400s). It’s eccen-
tricity is 0.38, and the parent star has a mass of .31 times that of the Sun. What is its semimajor
axis? How does this compare with the result you would get assuming the planet to be in a circular
orbit? The luminosity of Gliese 581 is 0.013 times that of the Sun. What is the instantaneous
incident stellar flux (the ”solar constant”) seen by the planet at periastron? At apastron? What
is the annual mean?

Do the same for the planet HD222582b, which is a 5 Jupiter-mass gas giant in orbit about a
class G star having a mass and luminosity approximately equal to that of the Sun. The eccentricity
of this planet is 0.76 and the orbital period is 572d.

Problem 7.1.24 Discuss the effect of the precessional cycle on the annual mean solar flux distri-
bution for a planet in an eccentric orbit. Specifically, show the solstice and equinox flux factors for
a planet having 25o obliquity, at several different stages of the precessional cycle. You may hold
the eccentricity fixed at 0.1. For Earth’s present obliquity and eccentricity (23.45o and 0.17) how
much does the precessional cycle affect the annual mean incident solar flux at 65N latitude?

Problem 7.1.25 it Summer melt energy

The Summer melt energy is defined as the incident solar flux at a given point, integrated over
the period of time for which the flux exceeds some threshold value Fo. This is meant to serve as
an index of the amount of energy available to melt ice, and so Fo is chosen to approximate the flux
needed to bring the ice surface to the melting point. The appropriate choice of Fo depends on the
ice albedo, meridional heat transport, surface flux conditions and various other things. Given a
suitable choice of Fo (perhaps guided by observations or by examination of simple or comprehensive
climate models), the melt energy statistic is simple to compute and provides a valuable guide as
to the trade-off between the Kepler’s law effect on duration of seasons and the precessional effect
on intensity of seasons. There are actually two variants of the melt energy floating around. In the
original one, the entire flux is integrated over the period where Fo is exceeded. In a more recent
alternate form, one only integrates the portion of the flux that is in excess of Fo, rather in the
spirit of ”heating degree days” used to estimate demand for home heating fuel. In the following,
you should compute both variants and compare. Note that the melt energy concept can be useful
for studying ablation of mountain glaciers as well as for large continental ice sheets.

Compute the summer melt energy at latitudes 65o and 40o as a function of the phase of the
precessional cycle for planets in orbits having eccentricity 0.02,0.05, 0.1 and 0.5 . Try a variety of
different values for Fo ranging from zero to the seasonal maximum. You may hold the obliquity
fixed at 25o for this problem, but if you are energetic you may wish to explore the behavior for
both higher and lower obliquities; the high obliquity case is relevant to Martian Milankovic cycles.

Hint: You don’t need to specify the stellar constant L~, since the melt energy statistic can
be formulated in terms of thresholds on the nondimensional flux factor f(t). To obtain values for
any given planet, the resulting statistic is simply multiplied by the value of L~ appropriate to the
orbit’s semi-major axis.
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Problem 7.1.26 Mercury has an orbital period of 87.967d, and a stellar day of 58.646d. These are
almost exactly in the ratio 3:2, and the state represents one of the stable spin states for a planet in
a fairly eccentric orbit. (Up until 1965, it was thought that Mercury was approximately tide-locked
to the Sun). The current eccentricity of Mercury’s orbit is 0.206. Mercury’s obliquity is essentially
zero.

Make a graph of the time variation of the longitude of the subsolar point over the course of
several Mercury years, taking into account the modulations of orbital speed caused by eccentricity.
Are there any times when the sun appears to ”go backwards?”

At any given latitude and longitude, the mean insolation over a stated period at that point
is determined by the time average of L~(t) cos ζ, where Lodot(t) is the time varying incident solar
flux given by the orbital position; in taking the average, you must remember to set the flux to
zero when the sun is below the horizon. Make contour maps of annual-mean insolation patterns
for several successive Mercury years. Does the pattern repeat? Show the patterns for an averaging
period of 3 Mercury years.

The surface temperature for illuminated regions is largely determined by the instantaneous
position of the subsolar point.However, the subsurface temperature depends on longer term aver-
ages, and the temperature of dark regions depends on how recently and how strongly they were
illuminated, since that determines how much time they have had to cool down.

Problem 7.1.27 Quasi-tidelocked spin states

A planet in an eccentric orbit cannot be truly tidelocked, since the angular rotation rate
of the planet’s spin about its axis is nearly constant while the angular velocity of the planet’s
orbit about the star increases as the planet gets closer to the star. However, such a planet can
still enter a quasisynchronous spin state, in which the planet’s rotation period is equal to its year.
In such a state, the planet always presents the same face to its star at periastron. It has been
conjectured that close-orbit eccentric extrasolar planets like Gliese 581c are in such a state. In
a truly tidelocked configuration, the subsolar point is anchored to a single point on the planet’s
surface, whereas in a quasisynchronous spin state, the subsolar point wobbles east and west over
the course of the orbit.

Discuss the pattern of insolation on a planet in a quasi-synchronous orbit, for various values
of the eccentricity. By how many degrees of longitude does the subsolar point wobble? What
portion of the equator never receives any illumination? What portion is perpetually illuminated?
(Without loss of generality, you may put the planet’s equator in the plane of the planet’s orbit;
obliquity is zero in this class of problems). Plot the behavior of the flux factor along the equator
at the periastron, apastron and at two intermediate points in the orbit. Plot the annual mean flux
factor. If you know how to make countour plots, make a series of maps showing the seasonal cycle
of the flux factor over the course of the year.

Problem 7.1.28 Mercury is in a quite eccentric orbit, but its spin state is not quasisynchronous.
Instead, it is locked in a 3:2 spin-orbit resonance, which is just a fancy way of saying that it rotates
about its spin axis three times for each two orbits about the Sun. The obliquity is essentially zero.
Determine the time series of Mercury’s insolation for a geographically fixed point on the equator.
Mercury’s eccentricity is 0.2. It is possible that eccentric extrasolar planets may also be in 3:2 spin
states rather than being quasisynchronous.

Problem 7.1.29 The directory MilankovicMars in the Workbook Datasets directory for this chapter
contains orbital parameters for Mars over the past 21 million Earth years, in increments of a
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thousand years. The data itself is in the file INSOLN.LA2004.MARSe.txt. Note that the precession
angle in this file is given relative to the spring equinox, and needs to be shifted so it is measured
relative to the northern hemisphere solstice as used in the text. Both the obliquity and precession
angle in this dataset are given in radians.

Using the orbital parameter data, compute a time series of the diurnally-averaged Martian
insolation at 65N , 30N and and the equator over the past 21 million years; plot the annual max-
imum, annual minimum and annual mean values. Then compute a time series of temperature at
these latitudes, assuming the albedo to be 20%, that the surface is in instantaneous equilibrium
with the absorbed solar radiation and that the atmosphere transports no heat away from the
surface. You can also ignore the greenhouse effect of the atmosphere. (These assumptions are
reasonable so long as the atmosphere remains roughly as thin as it is at present). Plot and discuss
the annual maximum,annual minimum and annual mean tempeatures, with particular attention
to regions that may become warmer than the freezing point of water and to the relative warmth
of the low latitudes vs. high latitudes. Although the seasonal cycle has large amplitude, the an-
nual mean surface temperature is still a relevant statistic, since it determines the deep subsurface
temperature. When the annual mean tropical region becomes colder than the poles, ice can be
expected to migrate from the poles to the tropics.

Recompute the annual mean temperature by finding the temperature which is in equilibrium
with the annual mean flux. How much does this differ from your previous result? Why does it
differ? If Mars had a thicker atmosphere or a deep mixed ocean would you expect the two different
ways of computing the annual mean to differ so much?

Note that with a thin atmosphere the Martian diurnal cycle will be extreme, just as is
observed today. The diurnally averaged temperature still is relevant, because it is the temperature
of a layer somewhat below the surface. However, computing the diurnally averaged temperature
by balancing radiation against the diurnally averaged insolation results in some error in the mean
temperature, because σT 4 is nonlinear. Estimate the magnitude of the error in terms of the diurnal
temperature range ∆T , which you can take as a given. A more precise way to solve this problem
would be to compute that actual diurnal cycle of temperature using the heat diffusion equation,
as was done in Problem 7.1.21.

Problem 7.1.30 Earth orbital parameter variations

The subdirectory Milankovic in the Workbook Datasets directory for this chapter contains
data on the variations of Earth’s eccentricity, obliquity and precession angle over the past five
million years, together with associated documentation. The orbital parameters are in the text file
orbit91. Angles in this file are in degrees; the precession angle is defined relative to the spring
equinox, and needs to be shifted to yield the angle relative to the northern hemisphere summer
solstice as used in the text.

Using the data in this file plot a time series of the annual mean insolation at the equator, 45N ,
45S, 65N and 65S. Since oceans respond primarily to the annual mean,these give an indication of
the response of the oceans to Milankovic forcing. Discuss the relative role of eccentricity, obliquity
and precession in the variations of the fluxes.

Over land, Milankovic variations have a strong effect on the seasonal cycle of temperature.
Compare the seasonal cycle of diurnal mean insolation at 65N and 15N between the present,
6000 years ago (the Holocene Thermal Maximum) and 11000 years ago. The differences are quite
subtle, so you can make the variations more apparent by plotting your results as deviations from
the modern cycle.
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Python tip The routine getOrbit(...) in FluxExplorer.py retrieves the orbital parameters
for you, and takes care of shifting the precession angle so that it is measured relative to the solstice.

7.1.5 Simulation of planetary seasonal cycles

Python tip: The required calculations in this section can be done by modifying the Chapter Script
SeasonalCycle.py.

Problem 7.1.31 Reproduce the calculation shown in Fig. ?? and compare the results with the
analytic solution based on sinusoidal time-dependence of the insolation. Then re-do the numerical
calculation with the assumed dynamical heat fluxes zeroed out. Put the dynamical heat fluxes
back in, and re-do the calculation with a mixed layer depth of 5m. Finally, for a 50m mixed layer
depth see what happens if you double and halve the length of year.

You may assume the orbit to be circular throughout this problem.

Problem 7.1.32 Southern hemisphere atmospheric seasonal cycle

The Earth’s southern hemisphere is mostly water, and because of the great thermal inertia
of the ocean, to a first approximation the sea surface temperature can be regarded as nearly fixed
in the course of the seasonal cycle. However, the atmosphere has lower thermal inertia, so that
absorption of solar radiation by the atmosphere can drive a significant atmospheric seasonal cycle
even if the sea surface temperature is fixed. This situation serves as a prototype for seasonal cycles
on all waterworlds.

Explore the seasonal cycle in this regime by formulating and numerically solving the differ-
ential equation for the seasonal cycle of air temperature making the following assumptions: (a)
The surface temperature remains fixed at a specified value Ts, (b) The atmosphere absorbs 20% of
the incident solar energy, and the rest is either reflected back to space or passed on to the ocean
surface, (c) The latitude is 45S and at this latitude the horizontal dynamical heat export from the
atmospheric column vanishes, (d) The atmospheric temperature structure remains on the moist
adiabat and (e) The OLR is given by the polynomial fit in Table ?? for Earth conditions with a
CO2 concentration of 300ppmv. Try various values of Ts ranging from near freezing to 310K, to
explore the effect of increasing evaporation. You may assume the orbit to be circular if you like.
Ideally, the thermal inertia of the atmosphere should be computed taking the latent heat storage
into account (see Problem 7.1.15), but to keep things simple you may compute the atmospheric
thermal inertia as if it were on the dry adiabat i.e. µ = cpps/g .

A peculiarity of the formulation of this problem is that Ts has been specified independently
of CO2. In general, the top-of-atmosphere fluxes will be out of balance even in the annual mean.
Compute the annual mean top-of-atmosphere imbalance for each of your cases. What effect does
the imbalance have on the mean atmospheric temperature? Try to rectify this problem by adjusting
the CO2 for each Ts so as to bring the annual mean top-of-atmosphere budget into approximate
balance

Hint The atmosphere can be treated like a mixed layer ocean with an equivalent thermal
inertia. The mixed layer equations only need to be modified to allow for the fact that only
a portion of the solar flux is absorbed in the atmosphere, and to allow for the fact that the
atmosphere exchanges energy with the surface as well as cooling to space. The latter fluxes can be
computed using the linearized or fully nonlinear surface flux formulae given in Chapter ??. (See
also Problem 7.1.16) In computing the surface fluxes, assume a fixed surface wind speed of 5m/s
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and a roughness length appropriate to the ocean. You may use neutral boundary layer theory and
ignore Monin-Obukhov stable boundary layer effects.

Problem 7.1.33 Temperature response to Earth Milankovic cycles

This problem explores the response of the Earth’s temperature over atmosphere and ocean
to Milankovic variations in insolation. The problem is treated through driving a mixed layer
model with the actual seasonal cycle of insolation taking into account the variations in obliquity,
eccentricity and precession angle. All of the calculations should be done using the polynomial
OLR fit for pre-industrial CO2 values (280 ppmv) so as to focus on Milankovic effects; in reality,
the glacial-interglacial CO2 variations also contribute to temperature variations. For oceanic cases,
use a mixed layer depth of 50 m. As an approximation to thermal inertia over land on the seasonal
time scale, take a mixed layer depth of 1 m. Assume the oceanic albedo to be 0.2 and the land
albedo to be 0.3. You may assume that the atmospheric heat budget is in equilibrium, so that the
net radiative heat loss from the column is given simply by the OLR. In the oceanic cases you may
ignore the effects of sea ice formation, but you should note cases in which sea ice can form.

To attack this problem first write a function that takes obliquity, eccentricity and precession
angle as inputs, and returns the annual mean, annual maximum and annual minimum temperature
by solving the differential equation describing the mixed layer model.

Using this function, plot the annual maximum, minimum and mean temperatures for the past
two million years at increments of one thousand years, using the time series of orbital parameters
for the past. Make plots showing the behavior at latitudes of 60o, 450 and 30o, for land and oceanic
conditions. In order to keep the mean temperature in a realistic range, you will need to impose
a dynamical heat export from the atmospheric column. Assume that this has a fixed value of
−20W/m2 at ±30o latitude, zero at ±45o latitude and 40W/m2 at ±60o latitude. Discuss your
results. To what extent do Milankovic cycles affect the annual mean temperature? To what extent
do they affect the amplitude of the seasonal cycle?

Note that for each set of orbital parameters you only need to run the simulation for a few
years until the seasonal cycle settles down. You do not need to run a simulation with time-varying
orbital parameters over the full two million year period!

See Problem 7.1.30 for information on the dataset of Earth’s Milankovic orbital parameter
variations.

Problem 7.1.34 Extreme Orbits

Is high obliquity or high eccentricity a threat to habitability? This problem shows that a
mixed layer ocean is in fact quite effective at averaging out extreme seasonal variations of insolation,
thus keeping the temperature variations from getting too big. For each of the configurations stated
below, numerically solve the mixed layer ocean seasonal cycle equations and show the time series
of temperature at the equator, ±45o, and the poles. Assume a mixed layer of depth 50m and a
uniform albedo of 0.2 . For radiative cooling use the OLR polynomial fit in Table ?? for 1000ppmv of
CO2. You may neglect the effects of sea ice formation, but you should note and discuss conditions
under which ice would form. Carry out your calculations with L~ = 1400W/m2; for elliptical orbits,
this should be interpreted as the flux at a distance from the star equal to the semi-major axis of
the orbit. Use the diurnally averaged form of the flux factor valid for planets that are rapidly
rotating relative to the length of the year.

To carry out the simulation you will also need to make an assumption about the dynamical
heat flux ∆F exported from the column. As a very simple representation of this, assume ∆F =

aF · (1−α)L~ · ( 1
4
− f̄(φ), where f̄(φ) is the annually averaged flux factor at the latitude in question
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and aF is a constant between zero and unity measuring the effectiveness of the horizontal mixing
of heat. When aF = 0 each latitude is locally in equilibrium, and when aF = 1 the annual mean
temperature is nearly uniform over the globe. Carry out your calculations with aF = 0.5, but feel
free to explore the effects of varying this parameter.

Carry out your calculations for two different cases: (a) a planet with a circular orbit having
an obliquity of 70o, and (b) a planet with 25o obliquity in an orbit with eccentricity 0.4.

If you are energetic, you can also explore the effect of variations in L~. How large does
it have to be in order to suppress ice formation? At what point do you approach a runaway
greenhouse threshold? How low does it have to be in order to form ice at 45o latitude (a situation
that is likely to provoke a Snowball once ice-albedo feedback is factored in)? Note that when there
is no ice the only nonlinearity in the problem comes from OLR(T ), so in circumstances where this
function can be linearized without loss of accuracy, all temperatures simply scale in proportion to
L~. Discuss the effects of the deviation from linearity.

7.1.6 A little data Analysis

Problem 7.1.35 Earth seasonal timeseries

The subdirectory NCEP of the Workbook Datasets directory for this chapter contains the file
SeasonalTseries.txt, which provides a 40 year record of monthly mean temperature at selected
points on the Earth’s surface.

Plot up and take a look at the two oceanic time series in the dataset. Model them using
a mixed-layer model driven by the actual insolation computed for these location and using the
polynomial OLR fit for 300ppmv CO2 concentration. Optimize your fit between model and data
by varying the mixed layer depth, albedo, and the amount of heat exported from the column by
dynamic horizontal heat transports.

Since the dataset covers several decades, it gives you the chance to see how much the
seasonal cycle varies from one year to the next Carry out your analysis for a few individual years
of your choice, seeing how much your best-fit model parameters need to be varied. Also, you can
form composite seasonal cycles for various 10-year periods by averaging all the Januaries, all the
Februaries, etc. within the period.

Problem 7.1.36 The data file described in Problem 7.1.35 also contains a time series from the
Australian interior desert and one from a high latitude Eurasian continental interior. Take a look
at these, and see if you can make sense of the behavior in light of what you know about seasonal
cycles over land. In the Eurasian case, can you see any imprint of thermal inertia due to the energy
needed to melt snow in the springtime?

Problem 7.1.37 An interesting way of showing the effect of thermal inertia is to do a scatter plot
of the surface temperature against the time series of insolation at the same point. If there were
no thermal inertia, the temperature would just be a function of the insolation and the data would
lie along a curve enclosing essentially no area. The ”opening” of the loop shows the amount of
memory in the system (both due to local and remote effects.

Carry out this analysis for the monthly mean temperature time series described in Problem
7.1.35. To connect the observations with theoretical expectations, plot some output from a mixed
layer model with various layer depths in the same way; use the same insolation time series as you
used in the data analysis.
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Problem 7.1.38 Viking Mars temperature analysis

Data from the Viking landers VL1 and VL2 can be found in the MarsViking subdirectory
of the Workbook Datasets directory for this chapter. VL1 was located at 22.48N and VL2 sat at
47.97N .

Pick a short winter period and a short summer period (of a few days each) for each lander,
and see how well you can model the diurnal cycle and mean temperature using an equivalent mixed-
layer model to represent the thermal inertia of the solid surface. Drive the model using a time series
of actual Martian insolation at the lander sites, computed from the present orbital parameters of
Mars and formulae in the text. Optimize your fit by varying cpH and the surface albedo. You
may represent the surface cooling as being purely due to infrared emission at a rate σT 4

g . There
will be some error in the results due to the neglect of the Martian greenhouse effect. There will be
some additional mismatch since Viking measured the air temperature at lander height, which can
be somewhat different from the surface temperature itself.

Then, if you are feeling ambitious, re-do the calculation using the diffusion equation in the
solid surface in place of an equivalent mixed layer model. In this case, you vary the thermal
conductivity to optimize the fit rather than cpH.
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8.1 Workbook

8.1.1 Silicate weathering

Problem 8.1.1 Based on the information shown in Fig. ??, how high does the temperature have
to be in order to inhibit the formation of iron carbonate, if the surface silicate rocks are in contact
with an atmosphere having a CO2 partial pressure of 100mb? Python Tips: The Chapter Script
EbelmenUreyEq.py carries out the calculations needed for Fig. ??.

Problem 8.1.2 It has been estimated that the current CO2 outgassing rate on Earth is about
8 ·109Mole/yr. Assuming that this is entirely balanced by reaction with CaSiO3 to form carbonate,
and that suitably weatherable rocks have a surface area amounting to 1

6
of the Earth’s surface, how

thick is the layer of rock that needs to be weathered away over the course of a thousand years?

The density of CaSiO3 is about 3000kg/m3. In reality, it is a fairly uncommon mineral
in the Earth’s crust, and weathering reactions involving the Feldspar famiily of silicates are far
more important. One member of this family is Anorthite (CaAl2Si2O8), with density of 2700kg/m3.
How would your result change if this were the mineral weathering? (As a crude approximation to
the chemistry, assume that each C from a CO2 molecule substitutes for one Si in the weathering
products. The actual weathering products include a bewildering array of silicate-bearing clay
minerals in addition to bicarbonate ion, which reduces the efficiency of the weathering reaction.)

Problem 8.1.3 Artificial CO2 outgassing

Our own planet at present is plagued with too much CO2 entering the atmosphere, owing
to fossil fuel combustion. However a planet which had cooled off to the point that tectonics had
stopped and outgassing of CO2 had ceased would have the opposite problem, in that CO2 would
be taken out of the atmosphere by silicate weathering without being replaced by a source. This
would lead to global cooling, and ultimately a snowball state on a planet with an ocean. How hard
would it be to sustain a technological replacement for outgassing?

The present weathering rate on Earth consumes about 5 · 10−5Mole/m2yr of carbon over
continental crust. The weathering rate should be similar for any vegetated planet with an Earthlike
climate and surface mineralogy. Suppose there is a fossil fuel reservoir containing 4000Gt of carbon.
How long could the silicate weathering be offset by judicious burning of this fuel? How many
kilowatt-hours of electricity would be produced by doing so? Compare that with current world
electricity production.

But what can be done after the fossil fuels are gone? All is not lost. Use the equilibrium
properties of the Ebelmen-Urey reactions to develop a strategy for cooking CO2 out of various
carbonate rocks by using solar energy to raise the rocks to some high temperature, and then
letting them cool down. This could be done using mirrors to focus solar energy. You may assume
that at sufficiently high temperatures the reaction proceeds so quickly that the time to reach
equilibrium is not a significant limitation. Determine how many kg of CaCO3 rock would have to
be processed over each square meter of land each year. Estimate the energy required to do the
processing. Compare this with a rough estimate of the solar energy falling on the area in the course
of the year. What proportion of the solar energy needs to be tapped in order to save this planet
from freezing? How might your answer differ if the rocks being processed are iron or magnesium
carbonates instead?

The specific heat of calcium or magnesium carbonate is about 1000J/kgK, and iron carbonate
(siderite) is only slightly less at 700J/kgK.
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Problem 8.1.4 Re-do the calculation of Fig. ?? for a range of different outgassing rates relative
to the present value Wo. How much would the outgassing rate have to be increased in order to
make the Early Earth temperature similar to the present value?

Python tips: This and subsequent silicate weathering thermostat problems can be done by
modifying the Chapter Script WHAK.py.

Problem 8.1.5 Precipitation limitation and silicate weathering

In Section ?? we showed that at sufficiently high temperatures the precipitation rate depends
explicitly on the surface absorbed solar radiation, and tends to level off at a limiting value. Idealize
this precipitation-temperature relation by assuming that the precipitation increases linearly with
temperature at the rate assumed in the text until the implied surface latent heat flux equals the
surface absorbed solar radiation, and thereafter remains constant.

For simplicity, we’ll assume that the atmosphere does not absorb any shortwave radiation,
though it may reflect some back to space before it can reach the ground, and we’ll also assume
that the albedo of the surface is zero, so that it absorbs all the shortwave radiation incident upon
it. In this case, the atmospheric albedo is also the planetary (i.e. top-of-atmosphere) albedo, so
the absorbed solar radiation at the surface or top-of-atmosphere is simply 1

4
(1 − α)L~. Compute

the clear-sky OLR using the polynomial OLR fit for an Earthlike atmosphere.

First, assuming that the atmosphere does not absorb or reflect any incoming shortwave
radiation, plot the temperature as a function of L~ for a range of different outgassing rates relative
to Earth’s present value. Discuss how these results differ from the case in which precipitation can
increase indefinitely, paying particular attention to the implications for planets in orbits with low
values of L~.

Now suppose that the atmosphere has clouds in it. If the clouds are low, they just change the
albedo, and the effects are equivalent to just changing the value of L~. As an opposite extreme,
suppose that the clouds have a height such that their albedo effect is exactly canceled by the
reduction in OLR caused by the clouds, much as happens for deep clouds in the Earth’s tropics
today. The clouds will then leave the temperature unchanged for any given CO2 concentration,
but they will alter the precipitation. What does this effect do to climate once silicate weathering
comes into equilibrium?

Carry out these calculations both for the biotic-land case in which the weathering rate is
not directly dependent on pCO2, and the abiotic case in which the weathering has a power-law
dependence on pCO2.

8.1.2 Ocean-Atmosphere partitioning

Python tips: The carbonate/bicarbonate equilibrium problems in the following group can be done
with the assistance of the Chapter Script CarbonateEq.py.

Problem 8.1.6 Suppose space aliens suddenly and instantaneously steal all the O2 from our atmo-
sphere. Photosynthesis would eventually regenerate the oxygen, but how much O2 would be put
back into the atmosphere by outgassing from the ocean inventory alone? Give your answer in the
form of the partial pressure of O2. You may assume that O2 is nonreactive in the ocean, so that
the ocean storage is governed entirely by Henry’s law.

Problem 8.1.7 Suppose a mutant nitrogen-fixing bacterium takes over the Earth and converts all
the N2 in the Earth’s atmosphere into NH3. Using Henry’s law, determine the new composition
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of the atmosphere once it comes into equilibrium with a 50m oceanic mixed layer. What is the
composition if the atmosphere comes into equilibrium with the top kilometer of ocean instead?

Problem 8.1.8 It has been proposed that Early Mars could have been warmed by a fairly high
abundance of SO2 in the atmosphere, arising from volcanic outgassing in an anoxic atmosphere.
Suppose that Mars at that time had a 500m deep water ocean covering 20% of the surface area of
the planet, with a mean temperature of 280K. Use Henry’s law to determine the partitioning of
SO2 between atmosphere and dissolved gas in the ocean. Ignoring any other oceanic SO2 reservoir
or sinks of SO2, how many Moles of SO2 need to be outgassed in order to achieve a concentration
of 100ppmv in a 1bar CO2 atmosphere? Compare the estimated outgassing rate per unit surface
area to the outgassing rate of CO2 on Earth.

If you are ambitious, you may want to think about the circumstances under which sulfite
and bisulfite can make up a substantial part of the oceanic sulfur pool.

Problem 8.1.9 Linearized carbonate equilibrium

Linearize the carbonate/bicarbonate equilibrium equations about an initial equilibrium state
with atmospheric partial pressure (pCO2)o,bicarbonate concentration [HCO−

3 ]o, carbonate concen-
tration [CO−−

3 ]o and a pH value (pH)o. Specifically, write pCO2 = (pCO2)o + ∆o, [HCO−
3 ] =

[HCO−
3 ]o +∆b and so forth, and solve for each perturbation ∆ in terms of ∆o assuming the pertur-

bations to be small compared to the unperturbed values. Find an explicit expression for the change
in pH and net atmosphere-ocean carbon storage as a function of the change in pCO2. Consider
both the case in which [Ca++] remains fixed at its unperturbed value and the case in which it is
kept in equilibrium with a reservoir of solid CaCO3.

Problem 8.1.10 Using Newton’s method, write a routine to determine the pH which satisfies the
charge balance relation in Eq. ??, given pCO2, [Ca++], and the equilibrium coefficients KH , K1 and
K2. Assuming [Ca++] = 0, find the pH of sea water at 298K in equilibrium with atmospheric CO2

concentrations of 280ppmv and 380ppmv. Do the same for fresh water, for which K1 = 7.65 · 10−9

and K2 = 1.01 · 10−12 for concentrations measured as mole fraction. Find the pH of carbonated
water in a sealed bottle, in equilibrium with 2 bar of pure CO2 gas.

Problem 8.1.11 In this problem you will compute the equilibrium carbon storage in the ocean
mixed layer as a function of the atmospheric pCO2, assuming that there is no time for additional
CaCO3 to dissolve beyond what is already in the mixed layer at some initial time. You may assume
the mixed layer to have a uniform temperature of 20C.

First estimate the number of Moles of H2O in the mixed layer, assuming a 50m mixed
layer depth covering 2

3
of the Earth’s surface. Next solve the carbonate/bicarbonate equilibrium

equations and use charge balance to compute the concentration [Ca++] assuming that the mixed
layer is in equilibrium with an atmosphere having CO2 concentration 280 ppmv (28 Pa partial
pressure) and its pH is 8.15.

Next, compute the total atmosphere/mixed-layer carbon storage and the ocean pH as a
function of pCO2, holding [Ca++] fixed at the value computed in the preceding part. Use your
results to discuss how much CO2 from fossil fuel burning would remain in the atmosphere over
times scales for which the mixed layer does not significantly exchange water with the deeper ocean.

Problem 8.1.12 Where did my trillion tonnes go?
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In the text we computed where the first trillion tons of fossil-fuel carbon would go, over
time scales long enough for surface waters to mix with the deep ocean, but too short for significant
additional input of dissolved CaCO3. What happens when additional carbon is added? How much
does the reduction in oceanic pH reduce the ocean’s ability to take up additional carbon?

To address this problem, compute the total atmosphere-ocean carbon content as a function
of the atmospheric pCO2, assuming [Ca++] to remain fixed at a pre-industrial value corresponding
to equilibrium with an atmosphere having a CO2 concentration of 280 ppmv. Present your results
in the form of a graph showing the atmospheric CO2 concentration as a function of the amount of
fossil-fuel carbon released in Gt, showing results out to 5000 Gt (the estimated amount of carbon
existing in worldwide coal deposits).

The outline of the calculation for this problem is essentially the same as for Problem 8.1.11,
except that this time one equilibrates with the entire volume of the ocean rather than just the
mixed layer.

Problem 8.1.13 Suppose that during a Snowball Earth episode,the atmospheric CO2 concentration
builds up to 10%. The ocean is in equilibrium with the atmosphere, and the dissolved calcium
carbonate has been maintained at saturation. Since there is little input of carbonate from land
weathering during a global glaciation, all of the calcium carbonate needed to maintain saturation
needs to have come from seafloor dissolution. Estimate the number of Moles of CaCO3 per square
meter of ocean floor that need to have dissolved in order to maintain saturation. How thick a layer
of CaCO3 does this correspond to? (The density of CaCO3 is 2700kg/m3).

Problem 8.1.14 Ecopoeisis on Mars

Plot spoiler warning: Read the story Ecopoeisis by Geoffrey Landis before reading the rest of
this problem.

In Landis’ story, an ecosystem has been introduced on Mars which has increased the annual
mean surface pressure of a pure CO2 atmosphere to 100mb. This has warmed the planet sufficiently
to melt the glaciers and create a water ocean at one of the poles. Taking the temperature range
indicated in the story as a given (i.e. leaving aside the question of whether 100mb of CO2 would
warm Mars that much) consider the effects of the polar ocean on the seasonal cycle of CO2,
including the effects of carbonate/bicarbonate equilibrium. At what parts of the seasonal cycle is
the ocean taking up CO2? At what point is it outgassing? What is the total mass of CO2 outgassed
each year? What is the effect on the surface pressure if the CO2 remains in a column over the
ocean? If the CO2 is uniformly distributed over the planet?

If the ocean becomes supersaturated during the outgassing season and then releases all of
the CO2 in a ten day long burst at the end of the warm season, estimate the wind speed if the
gas comes out in a radial current 3 km deep having uniform speed. Does the premise of the story
work?

Hints: You will need to make an assumption about the mean pH, or equivalently the anion
concentration [Ca++]. The latter can be assumed constant over the course of the seasonal cycle
(why?). Over much of the Martian surface the soils are acidic and carbonate-poor, so the mean
pH could be quite low. On the other hand, some carbonate-rich soils have been discovered in polar
regions, and so the ocean might be alkaline, with a pH similar to Earth’s oceans. Discuss both of
these limiting cases.

Assume that the ocean has a mass of 1019kg, spread uniformly over a layer centered on one
pole, having area equal to 20% of the Mars surface. Consider the mixed-layer depth to extend
through the full depth of the ocean. Model the seasonal ocean temperature cycle at the pole as a
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sinusoid with specified mean and amplitude. You are not expected to compute the seasonal cycle
from a simulation, though in fact you are equipped to do so using the material covered in Chapter
??. Try some different assumptions about the mean temperature and seasonal variation to see how
this affects the basic premise of the story.

8.1.3 Atmospheric Chemistry

Problem 8.1.15 Follow the photons I

Consider a planet in an orbit about an M-dwarf star with photospheric temperature 3500K,
which has L~ = 2600W/m2 (about the same as Venus). Suppose that the planet is undergoing a
runaway greenhouse and has developed a massive pure water vapor atmosphere. Assuming that
water vapor is dissociated by Far UV photons with wavelengths shorter than 0.21µm, estimate
the photon flux in this band by assuming that it is half the blackbody value (as for Earth), and
determine how long it would take to dissociate all the water originally contained in a liquid water
ocean of average depth 2km. Does the answer depend on the radius and surface gravity of the
planet?

Assuming that the absorption cross section per molecule is 10−25m2, estimate the thickness
of the layer (expressed in Pa) over which the dissociation occurs,given a surface gravity of 20m/s2.

Problem 8.1.16 Follow the photons II

Consider a planet whose upper atmosphere consists of a mixture of gas A having initial molar
concentration ηA and Far-UV cross section χA, with a gas B having initial molar concentration
ηB and a smaller Far-UV cross section χB. The cross sections are independent of wavelength.
The atmosphere is exposed to Far-UV with a given photon flux. The photolysis products do not
react to re-form the photolyzed gases, and also do not absorb any Far-UV photons. Compute the
time evolution of the concentrations of each gas under the following two limiting assumptions about
mixing: (a) The top 10mb of the atmosphere is a mixed layer within which all molar concentrations
are kept uniform in height as they change,and (b) There is no vertical mixing, so that a gas lost to
photolysis is never replaced by mixing in from a layer where the gas is more abundant. Plot the
time evolution of the profile of photon flux as well.

Put in some numbers corresponding roughly to an NH3/CO2 atmosphere on Early Earth,
and discuss the extent to which a CO2 dominated atmosphere could shield NH3 from photolysis.
The weakest points in your estimate will be the assumption that the cross-sections are wavelength-
independent and the assumption that the photolysis products neither react nor absorb photons.

Problem 8.1.17 CO2 photolysis and reformation

Re-do the CO2 photolysis and reformation problem discussed in connection with Eq. ??, but
this time for a thick CO2-dominated atmosphere in which mixing is slow enough that essentially
none of the photolysis products reach the ground before reacting. Model the photolysis assuming a
wavelength-independent cross section of 10−25m2 for wavelengths shorter than 0.17µm, and ignore
absorption by the photolysis products. Model the mixing by assuming that a layer extending from
the top of the atmosphere down to pressure pmix is instantaneously mixed to uniform composition.
Compute the molar concentrations of CO2, CO and O once the system has reached equilibrium, as
a function of pmix and the photon flux. Restrict your attention to cases in which essentially none
of the energetic photon flux exits the bottom of the mixed layer. Put in some numbers for the
photon fluxes for Earth, Mars and Venus, and for a range of mixed layer thickness. For computing
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the rate constants, you may assume the temperature to be 200K, and use the rate constant given
in the text.

If you are ambitious, you can replace the mixed-layer assumption with a solution of steady-
state diffusion equations for each of the chemical constituents, The methods used are precisely
the same as those discussed in Chapter ??, except for the need to introduce chemical sources
and sinks. You can solve this either as a time-stepping partial differential equation problem or a
steady state coupled second order ordinary differential equation problem. In either case, remember
to take into account the different diffusion constants for the various species. With the diffusion
formulation, you can also extend the problem to the case in which CO2 is a minor constituent in
an N2 background gas (assumed transparent to FUV ). In that case you would need to diffuse CO2

as well as the photolysis products.

Note that even in the absence of catalysis by the OH radical, the reformation process would
in reality be significantly affected by the recombination of 2O into O2, and the photolysis of O2.

8.1.4 Atmospheric Escape

Problem 8.1.18 Consider an atmosphere which is pure CO2 below the homopause, but which
photodissociates into CO and O at some pressure level p1 which lies above the homopause. Note
that the term ”homopause” here refers to the level above which the mixing is dominated by diffusion
rather than by turbulent motions, even though a single-component atmosphere will by definition
have uniform composition everywhere; this is why some prefer the term ”turbopause.” For the
purposes of this problem, you may ignore the recombination of the products back into CO2. You
may assume the atmosphere below the exobase to be isothermal at a temperature of 250K. You
may assume that conditions are such that the exobase lies at a low enough altitude that the gravity
is essentially the same as the surface gravity, but you should state how the rest of your results
depend on the planet’s gravity.

First compute what the exobase altitude and density would be if the CO2 didn’t dissociate
and the exobase were pure CO2. In this case one expects a cool exobase temperature, which you can
take to be 300K. Then, keeping the exobase temperature the same determine the exobase height,
density and composition as a function of the dissociation pressure level p1. When the exosphere
becomes dominated by O, the temperature is expected to rise. Say how your results change if you
assume the exobase temperature to be 1000K instead.

Using the profiles of CO and O you computed above, discuss where you think the recombi-
nation into CO2 is most likely to occur.

Problem 8.1.19 Jeans escape from M-dwarf planets

It has been suggested that for planets in close orbits about M-dwarfs, the high EUV output
early in the life of the star could cause massive early atmospheric loss, which in the case of N2

could be irreversible. One way this could happen would be for the EUV flux to be so high that the
outer atmospheric temperature becomes very high, enhancing Jeans escape directly and through
elevating the exobase to altitudes where the gravity is weaker. In this situation, it is only the outer
EUV -heated part of the atmosphere would become high. Deeper parts of the atmosphere respond
mainly to the net shortwave energy flux from the star, and would remain quite cool.

Consider a Super-Earth with radius and surface gravity twice that of Earth. The deep
atmosphere, consiting of almost all of the mass of the atmosphere, is represented by an isothermal
layer with a relatively cool temperature To; this layer is shallow enough that gravity is essentially
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constant within it. Above this lies an EUV -heated layer which begins at some specified pressure
p1 and has a high temperature Tex. Supposing the atmosphere to be pure N2 between po and
the ground, dissociating to N at higher altitudes, compute the exobase density and altitude as a
function of Tex. How large does this temperature need to be in order for the reduction of gravity to
be significant? Compute the Jeans escape flux, and determine how large Tex needs to be in order
to lose one bar of N2 in a billion years. How does your answer depend on po?

Note that Tex can substantially exceed the photospheric temperature of the star, since EUV

radiation is nonthermal and comes in with an energy flux much greater than what would be
expected from the photospheric blackbody temperature. Make an estimate of po in terms of the
EUV photon flux using the number and absorption cross-section of molecules at altitudes above po,
by estimating the number of molecules needed to use up the available photon supply. (Determining
the temperature is much more complicated, since one needs to know something of how the N atoms
in a nearly collisionless gas lose energy by radiation.)

Problem 8.1.20 Diffusion-limited escape on Titan

Estimate the diffusion-limit escape rate of hydrogen from Titan, assuming that hydrogen
escapes by diffusion of H2 through N2 and then dissociates to H just before it escapes to space at
the top of the atmosphere. Estimate how long it would take to lose one hydrogen atom from each
CH4 molecule in TItan’s atmospheric CH4 inventory, assuming that the photochemical reactions
that split off the H are not rate-limiting.

Estimate the Jeans escape rate of H and compare it with the diffusion-limited rate, to see
if the Jeans escape rate is high enough to make the escape diffusion-limited. Note that there are
escape mechanisms that can be more effective than Jeans escape. To compute the Jeans escape
rate you will need an estimate of the H mixing ratio at the exobase. This is difficult to do precisely,
so a crude estimate of the likely range will suffice. You may assume that H is a minor constituent
at the exobase.

Problem 8.1.21 In the text the diffusion limited escape problem was solved assuming that the
removal from the exobase was so rapid that the concentration of the escaping constituent could be
considered to be zero at the exobase. Re-do the problem using the actual flux boundary condition
at the exobase, namely that DdnA/dz = w∗na at the exobase, where nA is the number density
of the escaping consituent, D is the diffusivity of this constituent at the exobase and w∗ is the
escape flux coefficient, which has dimensions of a velocity. Show that it reduces to the result in
the text in the limit of large w∗, and that the escape flux is limited by w∗ rather than diffusion
when wJ becomes small. Define the notions of ”large” and ”small” precisely, through formulation
of a suitable nondimensional parameter.

In this problem, you may assume that the diffusive layer is thin compared to the radius of
the planet, so that the acceleration of gravity can be considered constant.

Problem 8.1.22 Speed of Sound

First show that the wave equation ∂ttφ− c2∂xxφ is satisfied by any function φ(x± ct), repre-
senting a disturbance propagating with speed c. Next, derive the wave equation for sound waves
by showing that the momentum equation is ∂tu

′ = −ρ−1
o ∂xp′ and the mass conservation equation

is ∂tρ
′ + ρo∂xu′ = 0 for small disturbances of velocity, density and pressure (u′,ρ′,p′) of a state of

rest with uniform density and pressure. Assume that pressure can be written as a function of
density p(ρ), and use the relation p′ = ρ′dp/dρ to combine the two equations into a wave equation,
from which you will be able to conclude that c2 = dp/dρ. Then, use the ideal gas equation of state
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and the definition of potential temperature to show that: (a) c2 = RTo if the gas is constrained
to remain isothermal, as in the case of very strong heat diffusion, and (b) c2 = γRTo if the flow
remains adiabatic.

Problem 8.1.23 The de Laval nozzle

Consider compressible flow in a tube with circular cross section, whose radius varies with
distance r along the axis of the tube. The velocity in the axial direction is uniform at each r, with
value u(r), so that the mass flux is ρ(r)u(r)A(r). The fluid is not subject to any external heating,
and the effect of gravity is negligible, as is the diffusion of heat. The gas satisfies the ideal gas
equation of state. The equations describing this flow are identical to those used for spherically
symmetric adiabatic hydrodynamic escape, except that A(r) replaces 4πr2 and the gravitational
potential has been dropped.

Solve the energy and entropy conservation equations to determine the characteristics of flow
in this tube, given the conditions on u, ρ and T at the inlet. Show that if the inlet flow is subsonic,
then the only way to cause the outlet flow to be supersonic is to arrange things such that there is
a constriction of the tube such that the transonic point occurs at the position of the minimum of
area. What do you think happens if an engineer tries to accelerate the flow to supersonic speeds
using a conical nozzle with area decreasing monotonically toward the outlet?

Problem 8.1.24 Adiabatic hydrodynamic escape from small bodies

Consider a spherical body with a single-component atmosphere which is transparent to all
incoming shortwave radiation as well as to outgoing infrared. It is a rocky body with a density
of 3000kg/m3. The surface is isothermal and has a specified temperature; once the temperature
is given, it does not matter for the purpose of this problem whether the surface temperature is
maintained by shortwave absorption, internal heat, or some combination of the two.

For what size of body can you sustain adiabatic hydrodynamic escape of H2 if the surface
temperature is 300K? What answer do you get if the atmosphere is N2 instead? Estimate the
lifetime of the atmosphere as a function of the size of the body in each of these cases. For a G star
with luminosity equal to the Sun, find the minimum size of body for which adiabatic hydrodynamic
escape of an N2 atmosphere can be sustained as a function of the orbital radius, assuming zero
albedo of the body and that the surface is heated by shortwave absorption.

Problem 8.1.25 Isothermal hydrodynamic escape flux

Compute the isothermal hydrodynamic escape flux as a function of the density at the base
of the escaping atmosphere and the critical (i.e. transonic) point position. State the corresponding
temperature of the layer, which is the same as the critical point temperature since the flow is
isothermal. The ”base” of the escaping flow can be taken to be at any convenient point of reference
where the kinetic energy of the radial velocity is negligible. Put in numbers corresponding to the
escape of atomic hydrogen on Earth and on Venus, and say how the results depend on the assumed
critical point position. What happens if you try to make a heavier species escape? Consider the
cases of atomic oxygen on Venus and atomic carbon on Mars as an example of this. Think hard
about the question of whether you can get around the requirement of very high base densities by
moving the altitude you choose for the base outward. Hint: The answer is that you can’tf.

Use the entropy equation to derive an expression estimating how much radiative flux is
needed to sustain the escape. How does the molecular weight of the escaping species affect the
result? Hint: Recall that the specific heat is largely determined by molecular weight.
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To complete the calculation of escape flux, you need to put in a number for the base density.
One gets the same answer regardless of where one takes the base to be so long as the kinetic
energy of the radial velocity is negligible there, since one is in the end solving for the structure
using hydrostatic balance, whether that is done directly or via the radial momentum equation.
Let’s restrict attention to the H escape case. A precise calculation requires solving the full photo-
chemistry problem simultaneously with a representation of vertical transport, but we’ll take some
shortcuts. To get the base density, assume that the homopause (i.e. turbopause) is pure H2O,
but that the water vapor decomposes into H2 and O2 just above the homopause. Then, assuming
the temperature of the layer above the homopause to be the temperature you computed on the
basis of the critical point position above, compute the scale height of each species, and find the
altitude at which H2 is 90% dominant, by Mole fraction. Assume that just above this point, the
H2 dissociates into H, and take the result as your base density of H.

Using this estimate, compute the escape flux for Venus, Earth and Mars, and determine
how long it would take to lose the H in a 2km deep ocean for each planet. Estimate the EUV flux
needed to sustain the escape, and compare this to the typical EUV fluxes encountered in the Solar
System. Recall that the young Sun could have put out an EUV flux a factor of ten or more greater
than is observed at present.

Problem 8.1.26 Impact erosion basics

First, reproduce the Mars and Earth lines in Table ?? to make sure you understand how
the calculation of impact erosion is done. Then compute the analogous results for a 1 bar N2

atmosphere on the Moon assuming a surface temperature of 260. Do the calculation first for the
case where the Moon orbits the Earth in its present orbit, and then for the case in which the Moon
orbits the Sun directly without sharing the orbit with Earth.

Then, re-do the estimates of mtot for Earth and Mars assuming that the mass spectrum of
impactors has the exponential form n(m) ∼ exp(−m/m1) instead of a power law. In this case, do
you need to truncate the distribution at a maximum mass m+?

Problem 8.1.27 Alternate assumptions about impactor energy

In the traditional view of impact erosion, the velocity of impactors scales with the escape
velocity of the target planet. More recent models, particularly of the Late Heavy Bombardment,
suggest that the population of impactors may instead be drawn from a pool of planetesimals in
orbit beyond Jupiter, whose orbits are perturbed and become eccentric enough to cross the inner
Solar system. This is known as the ”Nice Model” (after the town in Southern France, though the
model is indeed a nice one as well).

As a simple exploration of this situation, consider a target planet with mass Mp and radius
a in a circular orbit at distance rp from its star. The star has mass M~. The population of
impactors are in eccentric orbits which take them from a maximum distance r+ from the star to a
minimum distance r− < rp, which can collide with the target planet when they cross its orbit. The
impactors and the target orbit the star in ths same direction, so collisions will be rear-end rather
than head-on. Use conservation of energy and angular momentum to find an expression for the
impactor speed at the point where it crosses the target orbit at distance rp from the star. Use the
expression for the ellipse to find the angle at which the impactor’s orbit crosses the planet’s orbit,
and then use this angle and the planet’s orbital speed to determine the velocity of the impactor
relative to the planet. Under what circumstances is this relative velocity large in comparison to the
escape velocity of the planet (which gives the impact speed of an impactor initially at rest relative
to the planet, dropped from a great height)? Put in some numbers corresponding to Earth and
Mars.
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Now re-do the derivation of the formula relating mass of atmosphere lost to net impactor
mass, this time assuming the typical velocity of the impactor to have a fixed value vi independent of
the size of the target planet. This assumption is valid when the relative approach speed calculated
in the preceding paragraph is large compared to the escape velocity of the planet. Assume the
mass distribution of impactors to follow the same power law assumed in the text. Discuss how the
tendency of a planet to lose its atmosphere scales with the size of the planet in this case. Note that
if two planets are competing for the same population of impactors, then each will capture impactor
mass in proportion to its cross-sectional area, so that the smaller planet will get less total mass of
impactors than the larger planet.

Apply these results to the relative erodability of atmospheres on Early Earth and Mars,
assuming the impactor population to have eccentric orbits extending from that of Jupiter to that
of Venus.
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9.1 Workbook

9.1.1 Basic concepts

Problem 9.1.1 The pure CO2 atmosphere of Mars currently has a surface pressure on the order of
10mb. Recall that Φ/L~ is the key nondimensional quantity determining the effect of meridional
heat flux on the planetary temperature gradient. Making use of the scaling of Φ with planetary
radius and atmospheric mass path ps/g, how strong would typical Martian winds need to be in
order for the meridional heat transport to have an effect on Martian temperature variations of
similar magnitude to that in Earth’s atmosphere? To carry out this estimate you need an estimate
of ∆T . For that, you may assume that under the conditions where Mars is given an Earthlike
temperature gradient, ∆T has a value similar to that on the present Earth. Don’t forget to take
into account the specific heat of CO2 vs. that of Earth air.

You should do this estimate ignoring the effects of moisture in the Earth case. In reality,
about half of the heat transport in the present Earth’s atmosphere is due to moisture. What does
this fact do to your estimate of the winds required on Mars?

9.1.2 Diffusive energy balance models

General hints: For many of the problems in the following group you will need the annual-mean flux
factor as a function of latitude for a circular orbit. You can compute this by numerically evaluating
an integral using the formulae given in Chapter ?? (or using the ready-made Python routines
provided as part of the courseware). Alternately, to keep things simpler, you can make use of the
fact that the flux factor is well fit by the polynomial f(y) = ao +a2y

2 +a4y
4 where y = sinφ. The

coefficients (ao, a2, a4) have the values (.311,−.0873,−.162) for 10o obliquity, (.308,−.134,−.0682)
for 20o obliquity, (.300,−.155, .0116) for 30o obliquity and (.284,−.137, .0563) for 40o obliquity.

To keep the energy balance model linear, you will also need a linearized form of the function
OLR(T ). For an Earthlike atmosphere at 50% relative humidty with a CO2 concentration of
300ppmv, a reasonable fit to the actual OLR curve in the range of 220K to 310K is OLR(T ) =
a+b ·(T −220) where a = 113W/m2 and b = 2.177W/m2K. For other values of CO2 concentration
in the range between 50ppmv and 5000ppmv, a fairly good approximation to reality can be obtained
by changing the value of a to a′ = a − 5.77 ln(pCO2/300), where pCO2 is measured in ppmv.

Python tips: The basic steady-state linear diffusive energy balance model is implemented
in the Chapter Script SteadyLinearDiffusiveEBM.py. Most of the numerical problems in the
following group can be done by modifying this script.

Problem 9.1.2 For the general steady diffusive EBM described in Eq. ??, show that in the limit
of very small D, the temperature is determined by local energy balance. Show that in the limit of
very large D the temperature is uniform. Compute this temperature, by considering the integral
of Eq. ?? over the entire planet. Show that, when OLR(T ) is linear in T this procedure gives the
exact correct result for the global mean T regardless of the magnitude of the diffusivity.

In nondimensional terms, what is meant by ”small” diffusivity? Hint: build a number with the

same dimensions as diffusivity, based on the typical pole to equator variation in solar absorption.

Problem 9.1.3 Following on from the results of Problem 9.1.2, find an approximate expression
for the variation of T over the globe when D is large but not infinite. Specifically, write T (h) as
To + D−1T1(y) where To is constant, plug into Eq. ??, collect terms of order D−1, and analytically
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find an expression that solves the resulting equation. You should be able to do this problem without
assuming that OLR(T ) is linear.

Problem 9.1.4 Numerical solution for uniform albedo

Numerically solve the steady linear diffusive energy balance model equations for a planet
having uniform albedo of 0.2, forced by annual-mean insolation for a circular orbit. The planet
has Earthlike atmosphere and gravity, so a linear OLR(T ) fit based on Earth conditions can be
used. Explore the behavior as a function of obliquity, L~, and the atmospheric CO2 concentration.
Determine the conditions under which the planet can be expected to be ice-free, assuming it to be
a waterworld. You make keep the large scale diffusion parameter D fixed at 1W/m2. Leaving aside
the effects of gravity, how would the size of the planet affect the results (if at all)?

Hint: If you rewrite the model in terms of the shifted temperature variable T ′ ≡ (T−220+a′/b)

then L~ can be scaled out of the problem by using L~/b as a temperature scale. Thus, results for
arbitrary L~ can be obtained from a single numerical solution.

Problem 9.1.5 Numerical solution for solstice conditions

Problem 9.1.6 Ice-albedo bifurcation revisited

Using a steady, linear diffusive energy balance model with the ice latitude determined con-
sistently with the freeze temperature as described in the text, recompute the ice-albedo bifurcation
diagram using L~ as the control parameter, which we earlier computed using a zero-dimensional
globally averaged model (Fig. ??). For this problem, you may assume that the atmosphere is trans-
parent to infrared radiation, but is nonetheless massive enough to transport significant amounts
of heat. Explore the behavior as a function of the diffusivity used to represent large scale heat
transport, and as a function of the obliquity of the planet, assuming the orbit to be circular and
that the length of the day is short compared to the length of the year, as on Earth. Display your
results in two different forms: first using the global mean temperature as the response variable (as
in Fig. ??) and then using the ice margin yice as the response variable.

You may assume that the freeze temperature of sea water is 271K and that the ocean albedo
is 0.1. Show results for ice albedos of 0.5 and 0.7, corresponding to different degrees of snow cover
on the ice.

To implement the calculation, you first write a routine that computes the ice-margin tem-
perature as a function of the ice margin position, making use of the differential equation integration
described in the text. Then, you hand this function to a Newton’s method solver or some other
root-finder, which will find the positions of the equilbria; you need to re-run the root-finder many
times with different initial conditions in order to find all the solutions, since there may be more
than one. One way to make sure you find them all is to generate guesses by computing a rather
coarse array of Tice − Tfreeze and look for the values of y where there is a zero-crossing.

Problem 9.1.7 An EBM based on moist static energy diffusion

Derive a steady energy balance model based on the assumption that the moist static energy
flux is proportional to the gradient of mean moist staticc energy Eatm defined in Eq. ??, instead of
being proportional to the gradient of the zonal mean surface temperature T . In other words, derive
an alternate energy balance model based on diffusion of moist static energy instead of temperature.
In order to close the problem it is necessary to be able to write Eatm as a function of T , since the
OLR (and perhaps also the albedo) is a function of T . Show that this can be done provided that
the the following two conditions are satisfied: (1) The atmosphere is saturated everywhere, and
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(2) The atmosphere is on the moist adiabat, so that the moist static energy is uniform in each
column. State the function Eatm(T ) in terms of the saturation vapor pressure function.

Using the chain rule on the y derivative of Eatm(T ) appearing in the diffusion equation,
show that the equation can be re-cast as a temperature diffusion energy balance model with
a temperature dependant diffusivity. Discuss the behavior of this diffusivity as a function of
temperature, paying particular attention to the cold, dry limit and the very hot moisture-dominated
limit.

What kind of additional equation do you need to close the problem if the vertical temper-
ature profile is described by the saturated moist adiabat, but there are nonetheless unsaturated
regions? This situation is an accurate description of the Earth’s tropics, and a somewhat worse
approximation for the extratropics.

Throughout this problem, you may assume moisture is dilute, so that it is valid to use the
approximate dilute form of moist static energy.


