
KX SYSTEMS
VERSION 2.0

REFERENCE MANUAL

IMPORTANT
This manual describes the capability of K, the complete application development environment and analytical platform from Kx Systems. The manual is being provided with a demo copy of K-Lite, which is a subset of the K product.K-Lite is a time-limited, reduced version of K which enables interested developers to learn the language and develop small applications. K-Lite consists of the K language and interpreter, GUI software, and ASCII file read/write capability. It does not include connections, file mapping, interprocess communications or runtime capabilities.K-Lite is for educational purposes, and is not intended for commercial use. Accordingly, Kx Systems does not provide training, technical support or upgrades. K-Lite is not meant as an alternative to K, but an introduction to it.21 July 1998

K Reference Manual Copyright © 1998 by Kx Systems, Inc.

Edition 1, revision 4. All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the copyright owner.

This book is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Kx Systems, Inc. Kx Systems assumes no responsibility or
liability for any errors or inaccuracies that may appear in this book. The software described in this
book is furnished under license and may only be used or copied in accordance with the terms of
this license.

This manual describes the capability of K, the complete application development
environment and analytical platform from Kx Systems. The manual is being
provided with a demo copy of K-Lite, which is a subset of the K product.

K-Lite is a time-limited, reduced version of K which enables interested develop-
ers to learn the language and develop small applications. K-Lite consists of the K
language and interpreter, GUI software, and ASCII file read/write capability. It
does not include connections, file mapping, interprocess communications or
runtime capabilities. K-Lite is for educational purposes, and is not intended for
commercial use. Accordingly, Kx Systems does not provide training, technical
support or upgrades. K-Lite is not meant as an alternative to K, but an introduc-
tion to it.

K Reference Manual 3

1: INTRODUCTION 11
What is K? 11
Dependencies and Data Bases 11
The Language 12
Graphical User Interface 14
Connectivity 14
Component Management 15
About this manual 15

2: SYNTAX 17
Nouns 17
Verbs 18
Adverbs 19
List Notation 20
Index and Argument Notation 20
Conditional Evaluation and Control Statements 21
Function Notation 21
Juxtaposition and Vector Notation 21
Compound Expressions 22
Empty Expressions 22
Colon 22
Names 23
Function Composition 23
Adverb Composition 24
Fixing the Left Argument of the Dyad of a Verb 24
Precedence and Order of Evaluation 24

TABLE OF CONTENTS

4

Incomplete Expressions 25
Spaces 26
Special Constructs 27

3: TERMINOLOGY 29
Atoms 29
Atom Functions 29
Character Constant 32
Character String 32
Character Vector 32
Comparison Tolerance 32
Conformable Data Objects 33
Console 35
Dependencies 35
Dependent Variables 36
Depth 36
Dictionary 37
Dyad 37
Empty List 37
Entry 37
Escape Sequence 38
Floating-Point Vector 38
Function Atom 38
Handle 39
Homogeneous List 39
Integer Vector 39
Item 40
K-Tree 40
Left-Atomic Function 41
List 41
Matrix 41
Monad 41
Nil 41
Nilad 42
Numeric List 42
Numeric Vector 42
Primitive Function 42

K Reference Manual 5

Rank 42
Rectangular List 42
Right-Atomic Function 43
Script 43
Simple List 44
Simple Vector 44
String 44
String-Atomic Function 44
String Vector 44
Symbol 44
Symbol Vector 45
Trigger 45
Valence 45
Vector 45
Vector Notation 46

4: VERBS 47
Amend Item 47
Amend 51
Apply (Monadic) 57
Apply 58
Atom 60
Count 61
Divide 62
Drop / Cut 63
Enlist 65
Enumerate 66
Equal 67
Find 68
First 69
Flip 70
Floor 72
Format 73
Format (Dyadic) 74
Form 76
Function Inverse 78
Grade Down 80

6

Grade Up 83
Group 84
Index Item, or At 86
Index, or Of 88
Join 93
Less 94
Make / Unmake Dictionary 96
Match 97
Max / Or 98
Min / And 99
Minus 100
More 101
Negate 103
Not / Attribute 104
Plus 105
Power 106
Range 107
Reciprocal 108
Reverse 109
Rotate / Mod 110
Shape 112
Take / Reshape 114
Times 117
Value / Execute 118
Where 120

5: ADVERBS 121
Each 122
Each Left 125
Each Pair 127
Each Right 128
Over Dyad 130
Over 133
Over Monad 135
Scan Dyad 137
Scan 138
Scan Monad 139

K Reference Manual 7

6: AMEND, INDEX, APPLY & ASSIGN 141
Amend 142
Amend 144
Apply 146
Execute 148
Index 149
Item Amend 150
Item Index 152
Apply Monad 153

7: FUNCTIONS 155
Projection; Fixing Function Arguments 156
Localization 157
Local Functions 158

8: ATTRIBUTES 159
Arrangement 160
Background Color / Foreground Color 161
Class 162
Click / Double Click 162
Dependency 162
Editable 163
Format 163
Help 163
Label 164
Option List 164
Trigger 164
Update 164
Validation 165
Width / Height 166

9: CONDITIONALS 167
Conditional Evaluation 167
Do 168
If 169
While 170

8

10: CONTROLS AND DEBUGGING 171
Abort 171
Comment 172
Resume 172
Return 173
Signal 173
Stop / Trace 175

11: I/O AND COMMUNICATION 177
Load / Save Text File 177
Load Text File as Fields 179
Load/Save K Data as K Files 181
Load Binary File as Fields 182
Copy K Data from K File 184
Link Object Code 185
Communication Handle 186
Close Handle 187
Remote Set 188
Internal Data Type 190
Remote Get 191
Executable Form 193
Synchronized File Append 194
Interprocess Communication 195

12: COMMANDS 197
Adverbs 197
Assignment, Functions, Control 197
Attributes 197
Break Flag 198
Commands 198
Console Flag 198
Data and I/O Verbs 198
Directory 198
Directory Entries 199
Error Flag 199
Exit 199
Interrupt 200

K Reference Manual 9

Invalid Values 200
Load 200
OS Command 200
Print Precision 200
Random Seed 201
Runtime Program 201
Set Timer 201
Step 202
System Names 202
Time 202
Verbs 202
Workspace Size 202

13: SYSTEM VARIABLES 203
Current Directory 203
Current Global Set 203
Current Time 204
Host Process (Machine Name) 204
Host Process (Port) 204
Items Changed 204
Message Source (Handle) 204
Message Source (User) 204
Nil Value 205
Self Referent 205

14: SYSTEM FUNCTIONS 207
Binary Search 207
Delete Indices 209
Delete Value / Delete Value List 210
Draw 211
GMT Time / Local Time 212
Integer from Character / Character from Integer 213
Julian Day from Date / Date from Julian Day 214
Least Squares 215
Math Functions 217
Matrix Functions 218
Membership / List Membership 219

10

Scalar from Vector 220
String Match 222
String Search 223
String Search and Replace 225
Vector from Scalar 226

15: SCREEN DISPLAYS 229
Data Presentation 230
Display Classes 232

INDEX 235

K Reference Manual 11

CHAPTER 1

INTRODUCTION

What is K?

K is a high-level, interactive application development environment that is oriented
towards performance and system integration as well as functionality. It is designed
for the rapid deployment of dynamic applications that scale, that is, applications
with potentially large amounts of data that require very short development and
maintenance cycles. K has all the necessary components of application develop-
ment: database management, graphical user interface, connectivity to other prod-
ucts and languages, interprocess communication, component management and a
vector expression programming language, also called K. All K components pro-
vide their functions in effective, highly abstract ways that together greatly reduce
application code mass and development time without subsequent loss in machine
efficiency. And in cases where special functionality is required, C programs can be
written and seamlessly integrated into K.

Dependencies and Data Bases

Two of the most successful programming models in application software are spread-
sheets and relational databases. Spreadsheets provide a convenient, easily under-
stood user interface for data layout and interdependence of data values based on
formulas. Relational databases provide, in principle, a mathematically consistent
way to create application-specific views of data stored in base tables. Despite the
popularity and widespread use of these models, the popular commercially-avail-
able implementations have severe limitations in the application area where K stakes

12

its claim: spreadsheets, while rich in features, are only effective for relatively small
amounts of data, and access to relational data is much more inefficient, awkward
and tedious than the relational model suggests.

K brings both the spreadsheet and relational database models to bear on problems
with large amounts of data. The data in these problems tend to be organized in
homogeneous fields with many items, that is, fields that each consist entirely of
one type of data, such as floating-point numbers or character strings. It is crucial in
these applications to manage long fields of homogeneous data effectively, and K
does that for both the spreadsheet and relational database models. In the case of
spreadsheet-like interactions, K dependencies describe interrelations among entire
fields — not just on individual cells within those fields — while relational tables
can be organized in files so as to appear like ordinary K data objects to applica-
tions, thereby bringing the complete language and graphical user interface to bear
directly on stored data.

On the other hand, K is not restricted to problems in which the data are organized
in homogeneous fields. The general data structure of the language is lists of lists,
which accept heterogeneous mixtures of the underlying data types, but have ho-
mogenous fields as special cases. Consequently the more common logical organi-
zations of data as individual cells in spreadsheets and records in relational data-
bases are also available.

The Language

The language is a compact and complete formula vector language that can imple-
ment any algorithm, usually with much less code than conventional scalar-oriented,
control-structure-based languages. For example, the following expression defines
present value as a spreadsheet-like dependency on cash flows, discounts, and pay-
ment dates:

 PresentValue..d :"+/ CashFlows * Discounts[Dates]"

The execution of this expression, “sum the product of the cash flows and discounts
at specified dates”, is as efficient as a native C program. And whenever CashFlows,
Discounts, or Dates changes, a subsequent reference of PresentValue will cause its
new value to be computed.

K Reference Manual 1: Introduction 13

Or, consider a common relational table manipulation to link two tables A and B on
a field F, which means realign the records of A and B so that they match up on field
F. If F is a key field in A, that is, has unique items, then B can be left unchanged
while A is realigned relative to B. The indented lines in those below give a K
expression, and the non-indented line or lines below give the value of the expres-
sion. First, an index field I and key field F are defined for table A. Then the field F
is defined for B. Next we look for the index in A.F of each item of B.F. Finally, we
show the complete expression for realigning A relative to B, and the result of ex-
ecuting that expression:

 A.I: 1 2 3
 A.F: 2 5 7
 B.F: 5 2 5 2 2 7 2 5 7 5

 A.F ?/: B.F
1 0 1 0 0 2 0 1 2 1

 A[; A.F ?/: B.F]
(2 1 2 1 1 3 1 2 3 2
 5 2 5 2 2 7 2 5 7 5)

There is nothing in this expression suggesting that the table A and the fields A.F
and B.F are anything other than ordinary variables. No matter how files are orga-
nized in a K database, whether as fields or more general lists, once opened they are
treated like ordinary data objects. This is part of the foundation for building appli-
cations that scale: applications can be developed using local workspace test data,
and then applied to data in files without any code modification.

Most languages assign the basic arithmetic functions to symbols and permit ex-
pressions to be formed in the common mathematical way, for example with the
symbols between pairs of arguments, as in x + y * z for “x plus y times z.” K
has a much richer set of primitives that can be used in this manner, including ones
for common functions like sorting and searching, summarizing and updating. Many
other functions can be expressed in terms of these primitives, which has two prin-
cipal effects. First, the K implementation has made these few primitives as effi-
cient as possible. And secondly, it is worthwhile for K programmers to use this
expressiveness as much as possible, thereby taking advantage of the underlying
efficient implementation, and indirectly greatly reducing the code volume that would
otherwise result from reliance on control structures for everything beyond a few
arithmetic expressions.

14

In fact, the primitives run at or close to maximum machine performance. On a Sun
workstation (40 mhz Sparc 10) it is possible to sort 1,000,000 records per second in
tables with tens of millions of records. Searching is constant time. Data access,
update and append are also constant time. Sorting is linear time. The simplest and
fastest algorithms are used in the implementation of the primitive functions.

Graphical User Interface

The value of a variable can be printed during an interactive K session simply by
entering its name alone on a line. The value can also be shown on a display screen
in any one of the usual ways: as a chart, table, button, layout, and so forth, and
almost as simply as entering its name. For example, if n is a list of numbers, you
may chart these as x-values by assigning “chart” as n’s display class attribute:

 n..c: `chart

followed by

 `show $ `n

The screen display of any value and the value itself are tightly coupled: if the screen
view is edited, the value of the variable is automatically changed accordingly, and
if the variable changes, so does the view. Spreadsheet-like dependencies displayed
on the screen are automatically updated so that displays of all formula relation-
ships are consistent.

The implementation of display screens is also very efficient, relying on low level
graphics functions. For example, relational tables with tens of millions of records
can be viewed and scrolling is instantaneous.

Connectivity

The K environment connects easily and efficiently with other products, either as
subroutines callable within K applications or by way of interprocess communica-
tion. K is a very good environment for working with C and Fortran. A subroutine
written in one of these languages can be dynamically loaded into the K environ-
ment, where test data can be interactively generated and results displayed in a vari-
ety of ways. Such tests may suggest changes to the source code, which is easily
reloaded after changes have been made.

K Reference Manual 1: Introduction 15

In addition to being able to call C subroutines from a K application, it is also pos-
sible to connect to other products with process-to-process message passing. Values
can be set and retrieved from processes and expressions can be remotely executed,
all based on ordinary language expressions. Any transaction can be phrased as a
single message, and therefore any transaction can be made atomic.

Component Management

Application code is organized in a hierarchical name space called the K-tree. Every
utility library can be assigned its own place in the hierarchy to avoid name con-
flicts. All screen objects — indeed all objects tied to events — are global variables
in the name space, as are all their attributes. Attributes occupy special positions in
the name space relative to the variables they modify. Every component in an appli-
cation is a data object in the K-tree, including open data sets, programs, screen
objects and their attributes, and messages to and from other processes.

About this manual

This manual provides a complete definition of the K language. See the K User
Manual for examples of its use and an introduction for new users. If you are new to
K and the User Manual is not available, familiarize yourself with the first two
chapters before using the rest of this manual.

16

K Reference Manual 17

CHAPTER 2

SYNTAX

This chapter is concerned with two things: how to arrange symbols and names into
expressions, and the way these expressions are executed. The purpose is to not only
explain which lines of characters are meaningful and which are not, but also to
help programmers read and write applications. Thus, the content of the chapter is
not just syntax; there is often reference to the meanings of the symbols in order to
place things in context.

All printable ASCII symbols have syntactic significance. Some denote verbs, that
is, actions to be taken; some denote nouns, which are acted on by verbs; some
denote adverbs, which modify nouns and verbs to produce new verbs; some are
grouped to form names and constants; and others are punctuation that bound and
separate expressions and expression groups.

The term token is used to mean one or more characters that form a syntactic unit.
For instance, the tokens in the expression10.86 +/ LIST are the con-
stant 10.86, the nameLIST, and the symbols+ and / . The only tokens that
can have more than one character are constants and names.

At various points in this chapter it is necessary to refer to the token to the left or
right of another unit. Terms like “immediately to the left” and “followed immedi-
ately by” mean that there are no spaces allowed between the two tokens.

Nouns

All data are syntactically nouns. Data include atomic values, collections of atomic
values in lists, lists of lists, and so on. The atomic values include the usual charac-
ter, integer, and floating-point values, as well as symbols, functions, dictionaries,

18

and a special atom _n, called nil. All functions are atomic data. List constants
include several forms for the empty list denoting the empty integer list, empty
symbol list, and so on. One-item lists use the comma to distinguish them from
atoms, as in,2 (the one-item list consisting of the single integer item 2).

Numerical (integer and floating-point) constants are denoted in the usual ways,
with both decimal and exponential notation for floating-point numbers. The spe-
cial numeric atoms 0I and 0N refer to integer infinity and “not-a-number” (or
“null” in database parlance) concepts, and similarly 0i and 0n for floating-point.
A negative numerical constant is denoted by a minus sign immediately to the left of
a positive numerical constant.

An atomic character constant is denoted by a single character between double quote
marks, as in "a"; more than one such character, or none, between double quotes
denotes a list of characters. A symbol constant is denoted by a back-quote to the
left of a string of characters that form a valid name, as in `a..b_2. The string of
characters can be empty; that is, back-quote alone is a valid symbol constant. A
symbol constant can also be formed for a string of characters that does not form a
valid name by including the string in double-quotes with a back-quote immediately
to the left, as in ̀"a-b!".

Dictionaries are created from lists of a special form. Functions can be denoted in
several ways, all of which are presented below. In effect, any notation for a func-
tion without its arguments denotes a constant function atom, such as+ for the
Plus function.

Verbs

Each of the symbols + - * % | & ^ < > = ! # _ ~ $? @ . and ,
represents a verb. They are called verbs in general, but are also called primitive
verbs when it is necessary to distinguish them from the derived verbs formed by
adverbs, described in the next section. Any verb can appear between nouns, as in

 2 - 3

or to the left of a noun with either nothing or something other than a noun to its left,
as in

K Reference Manual 2: Syntax 19

 - 3
 �(- 3 �
 12.5 + - 3

Expressions like 2 - 3 are called infix expressions, and those like the latter three
are called prefix expressions.

Whenever a verb appears in one of these two ways its functional meaning is deter-
mined. For example,- denotes subtraction in the expression2 - 3, and nega-
tion in the three example prefix expressions. Every verb denotes two functions: a
function of two arguments when there are nouns to the left and right, and a function
of one argument when there is a noun to the right but not to the left. These func-
tions are called the dyadic and monadic functions of the verb, respectively, or,
more simply, the dyad and the monad.

Adverbs

There are three adverb symbols and three adverb symbol pairs; slash and slash-
colon (/ and /:), back-slash and back-slash-colon (\ and \:), and quote and
quote-colon (' and ':). Any one of these, in combination with the noun or verb
immediately to its left, denotes a new verb. For instance,+/ denotes a verb that
can appear between nouns, as ina +/ b, or to the left of a noun with no noun to
its left, as in +/ b. The resulting verb is a variant of the object modified by the
adverb. For example, + is Plus and +/ is Sum:

 +/ 1 2 3 4 sum the list 1 2 3 4
10
 16 +/ 1 2 3 4 sum the list with starting value 16
26

Verbs created by adverbs are called derived verbs. The functions associated with
primitive verbs are called primitive functions, while those associated with derived
verbs are called derived functions.

20

List Notation

A sequence of expressions separated by semicolons and surrounded by left and
right parentheses denotes a noun called a list. The expression for the list is called
a list expression, and this manner of denoting a list is called list notation. For ex-
ample:

 (3 + 4; a _ b; -20.45)

denotes a list. The empty list is denoted by (), but otherwise at least one semico-
lon is required. When parentheses enclose only one expression they have the com-
mon mathematical meaning of bounding a sub-expression within another expres-
sion. For example, in

 (a * b) + c

the product a * b is formed first and its result is added to c; the expression
(a * b) is not list notation. One-item lists use the Enlist verb (comma), as in
,"a" and ,3.1416 .

Index and Argument Notation

A sequence of expressions separated by semicolons and surrounded by left and
right brackets ([and]) denotes either the indices of a list or the arguments of a
function. The expression for the set of indices or arguments is called an index
expression or argument expression, and this manner of denoting a set of indices or
arguments is called index or argument notation. For example,m[0;0] selects the
element in the upper left corner of a matrix m, andf[a;b;c] evaluates the tri-
adic function f with the three arguments a, b, and c. Unlike list notation, index and
argument notation do not require at least one semicolon; one expression between
brackets will do.

Verbs can also be evaluated with argument notation. For example,+[a;b] means
the same asa + b . All dyadic verbs can be used in either prefix or infix notation.

Bracket pairs with nothing between them also have meaning; m[] selects all items
of a list m and f[] evaluates the nilad f. Finally, there is the special form d[.]
for a dictionary d, which produces a list of all the attribute dictionaries for the
entries of d.

K Reference Manual 2: Syntax 21

Conditional Evaluation and Control Statements

A sequence of expressions separated by semicolons and surrounded by left and
right brackets ([and]), where the left bracket is preceded immediately by a colon,
denotes conditional evaluation. If the worddo, if, or while appears instead
of the colon then that word together with the sequence of expressions denotes a
control statement. The first line below shows conditional evaluation; the next three
show control statements:

 :[a;b;c]
 do[a;b;c]
 if[a;b;c]
 while[a;b;c]

Function Notation

A sequence of expressions separated by semicolons and surrounded by left and
right braces ({ and }) denotes a function. The expression for the function defini-
tion is called a function expression, and this manner of defining a function is called
function notation. The first expression in a function expression can optionally be
an argument expression of the form [name1;name2;�;nameN] specifying the
arguments of the function. Like index and argument notation, function notation
does not require at least one semicolon; one expression (or none) between braces
will do.

Juxtaposition and Vector Notation

There is another similarity between index and argument notation. Prefix expres-
sions evaluate monadic functions, or monads, of verbs, as in-a. This form of
evaluation is permitted for any monad. For example:

 {x - 2} 5
3

This form can also be used for item selection, as in:

 (1; "a"; 3.5; `xyz) 2
3.5

22

Juxtaposition is also used to form constant numeric lists, as in:

 3.4 57 1.2e20

which is a list of three items, the first 3.4, the second 57, and the third 1.2e20. This
method of forming a constant numeric list is called vector notation.

The items in vector notation bind more tightly than the objects in function call and
item selection. For example, {x - 2} 5 6 is the function {x - 2} applied to
the vector 5 6, not the function {x - 2} applied to 5, followed by 6.

Compound Expressions

As a matter of convenience, function expressions, index expressions, argument
expressions and list expressions are collectively referred to as compound expres-
sions.

Empty Expressions

An empty expression occurs in a compound expression wherever the place of an
individual expression is either empty or all blanks. For example, the second and
fourth expressions in the list expression (a+b;;c-d;) are empty expressions.
Empty expressions in both list expressions and function expressions actually repre-
sent a special atomic value called nil.

Colon

The colon has several uses, including conditional evaluation (:[a;b;c]) noted
previously. Its principal use is denoting assignment. It can appear with a name to its
left and a noun or verb to its right, or a name followed by an index expression to its
left and a noun to its right, as in x:y and x[i]:y. It can also have a primitive
verb immediately to its left, with a name or a name and index expression to the left
of that, as in x+:y and x[i],:y. A pair of colons within a function expression
denotes global assignment, that is, assignment to a global name ({� ; x::3 ; �}).

The verbs associated with I/O and interprocess communication are denoted by a
colon following a digit, as in 0: and 1: .

K Reference Manual 2: Syntax 23

A colon used monadically in a function expression, as in :r , means return with
the result r.

A verb with a noun to its right is a dyad if there is also a noun to its left, and is
otherwise a monad. These are the immediate uses of a verb, because evaluation
takes place immediately. Other uses are not immediate. For example, a verb that is
modified by an adverb is not evaluated immediately, although the derived function
may be. Other than in immediate use, the verb always denotes its dyad. For ex-
ample, the first item in the list (-;3) is the minus function x - y. If it is needed,
the monad can be specified by appending a colon to the right of the symbol, as in
(-:;3), where the first item is now the negate function - x. The monad cannot
be used for derived verbs, and cannot be used when there is a noun to the right of
the verb.

Names

Names consist of the upper and lower case alphabetic characters, the numeric char-
acters, dot (.) and underscore (_). The first character in a name cannot be numeric.
Names whose first character is the underscore are system names, and cannot be
created by users. There are several system names that are syntactically like the
dyads of verbs. For example, _bin is one, and can be evaluated bya _bin b
or _bin[a;b]. Names with dots are compound names, and the segments be-
tween dots are simple names. All simple names in a compound name have mean-
ing relative to the K-tree, and the dots denote the K-tree relationships among them.

At most two dots in a row can occur in names. Any simple name following two dots
denotes an entry in an attribute dictionary. Compound names beginning with a dot
are called absolute names, and all others are relative names.

Function Composition

Any sequence of primitive verb symbols that is not immediately followed by a
noun or adverb denotes a dyadic function. Each symbol denotes its monad except
the rightmost one, which denotes its dyad. For example, (%-)[a;b] is %(a - b)
and the function ne:~= is “not equals”. Composed dyads cannot be used in infix
expressions because of ambiguity problems. For example,a~=b meansa~(=b),
which is quite different from~a=b or ne[a;b].

24

If the right-most symbol in such a sequence is followed by a colon immediately to
its right, the colon modifies that symbol and denotes the monad of that verb, and
the sequence with the colon denotes a monad. For example, (%-:)3 is %(- 3).

Adverb Composition

A verb is created by any string of adverb symbols with a noun or verb to the left of
the string and no spaces between any of the adverb symbols or between the noun or
verb and the leftmost adverb symbol. For example, +\/:\: is a well-formed
adverb composition. The meaning of such a sequence of symbols is understood
from left to right. The leftmost adverb modifies the verb or noun to create a new
verb, the next adverb to the right of that one modifies the new verb to create an-
other new verb, and so on, all the way to the adverb at the right end.

Fixing the Left Argument of the Dyad of a Verb

If the left argument of a dyad is present but the right argument is not, the argument
and verb symbol together denote a monad. For example, 3 + denotes the monad
“3 plus”, which in the expression (3 +) 4 is applied to 4 to give 7.

Precedence and Order of Evaluation

All verbs in expressions have the same precedence, and with the exception of cer-
tain compound expressions the order of evaluation is strictly right to left. For ex-
ample,

 a * b + c

is a*(b+c), not (a*b)+c.

This rule applies to each expression within a compound expression and, other than
the exceptions noted below, to the set of expressions as well. That is, the rightmost
expression is evaluated first, then the one to its left, and so on to the leftmost one.
For example, in the following pair of expressions, the first one assigns the value 10
to x. In the second one, the rightmost expression uses the value of x assigned above;
the center expression assigns the value 20 to x, and that value is used in the leftmost
expression:

K Reference Manual 2: Syntax 25

 x: 10
 (x + 5; x: 20; x - 5)
25 20 5

The sets of expressions in index expressions and argument expressions are also
evaluated from right to left. However, in function expressions, conditional evalua-
tions, and control statements the sets of expressions are evaluated left to right. For
example:

 f:{a : 10; : x + a; a : 20}
 f[5]
15

The reason for this order of evaluation is that the function f written on one line
above is identical to:

 f:{ a : 10
 : x + a
 a : 20 }

It would be neither intuitive nor suitable behavior to have functions executed from
the bottom up. (Note that in the context of function expressions, monadic colon is
Return.)

Incomplete Expressions

Individual expressions can occupy more than one line in a source file or can be
entered on more than one line in an interactive session. Expressions can be broken
at the semicolons that separate the individual expressions within compound ex-
pressions, and when this is done the semicolon should be omitted; in effect, con-
tinuing an expression on a new line inserts a new-line character as the statement
separator. For example:

 (a + b
 c - d)

is the list (a+b;c-d). The effect of a semicolon at the end of a line within an
incomplete expression is to introduce an empty expression. For example:

26

 (a + b;
 c - d)

is the three item list (a+b;;c-d).

Note that whenever a set of expressions is evaluated left to right, such as those in a
function expression, if those expressions occupy more than one line then the lines
are evaluated from top to bottom.

Spaces

Any number of spaces are usually permitted between tokens in expressions, and
usually the spaces are not required. The exceptions are:

• No spaces are permitted between the symbols

• ' and : when denoting the adverb ':

• \ and : when denoting the adverb \:

• / and : when denoting the adverb /:

• a digit and : when denoting a verb such as 0:

• : and : for assignment of the form name :: value;

• No spaces are permitted between an adverb symbol and the verb, noun or
adverb symbol to its left;

• No spaces are permitted between a primitive verb symbol and a colon to its
right whose purpose is to denote either assignment or the monadic case of
the verb;

• No spaces are permitted between a left bracket and the character to its left.
That is, index and argument notation as well as the left bracket in a condi-
tional evaluation or control statement must immediately follow the token to
its left;

• If a / is meant to denote the left end of a comment then it must be preceded
by a blank, for otherwise it will be taken to be part of an adverb;

K Reference Manual 2: Syntax 27

• Both the underscore character (_) and dot character (.) denote verbs and
can also be part of a name. The default choice is part of a name. A space is
therefore required between an underscore or dot and a name to its left or
right when denoting a verb;

• At least one space is required between neighboring numeric constants in
vector notation;

• A minus sign (-) denotes both a verb and part of the format of negative
constants. A minus sign is part of a negative constant if it is next to a posi-
tive constant and there are no spaces between, except that a minus sign is
always considered to be the verb if the token to the left is a name, a con-
stant, a right parenthesis or a right bracket, and there is no space between
that token and the minus sign. The following examples illustrate the various
cases:

 x-1 x minus 1
 x -1 x applied to -1
 3.5-1 3.5 minus 1
 3.5 -1 numeric list with two elements
 x[1]-1 x[1] minus 1
 (a+b)- 1 (a+b) minus 1

Special Constructs

Slash, back-slash, colon and single-quote (/ \ : ') all have special meanings
outside ordinary expressions, denoting comments, commands and debugging con-
trols.

28

K Reference Manual 29

CHAPTER 3

TERMINOLOGY

Atoms

All data are atoms and lists composed ultimately of atoms. See Nouns in the chap-
ter Syntax.

Atom Functions

There are several recursively-defined primitive functions, which for at least one
argument apply to lists by working their way down to items of some depth, or all
the way down to atoms. The ones where the recursion goes all the way down to
atoms are called atom functions, or atomic functions .

A monad is said to be atomic if it applies to both atoms and lists, and in the case of
a list, applies independently to every atom in the list. For example, the monad
Negate, which is monadic - , is atomic. A result of Negate is just like its argument,
except that each atom in an argument is replaced by its negation. For example:

 - 3 4 5 -(5 2; 3; -8 0 2)
-3 -4 -5 (-5 -2

 -3
 8 0 -2)

Negate applies to a list by applying independently to every item. Accessing the ith
item of a list x is denoted by x[i] , and therefore the rule for how Negate applies
to a list x is that the ith item of Negate x , which is (-x)[i] , is Negate applied to
the ith item, that is -x[i] .

30

Negate can be defined recursively for lists in terms of its definition for atoms. To
do so we need two language constructs. First, any function f can be applied inde-
pendently to the items of a list by modifying the function with the Each adverb, as
in f' . Secondly, the monadic primitive function denoted by @x is called Atom
and has the value 1 when x is an atom, and 0 when x is a list. Using these con-
structs, Negate can be defined as follows:

 Negate:{:[@ x; - x; Negate' x]}

That is, if x is an atom then Negate x is -x, and otherwise Negate is applied
independently to every item of the list x. One can see from this definition that
Negate and Negate' are identical. In general, this is the definition of atomic:
a function f of any number of arguments is atomic iff is identical to f' .

A dyad f is atomic if the following rules apply (these follow from the general defi-
nition that was given just above, or can be taken on their own merit):

• f[x;y] is defined for atoms x and y ;

• for an atom x and a list y, the resultf[x;y] is a list whose ith item is
f[x;y[i]] ;

• for a list x and an atom y, the resultf[x;y] is a list whose ith item is
f[x[i];y] ;

• for lists x and y , the result f[x;y] is a list whose ith item is
f[x[i];y[i]] .

For example, the dyad Plus is atomic.

 2 + 3 2 6 + 3
5 5 9
 2 + 3 -8 2 6 + 3 -8
5 -6 5 -2

 (2; 3 4) + ((5 6; 7 8 9); (10; 11 12))
((7 8
 9 10 11)
 (13
 15 16))

K Reference Manual 3: Terminology 31

In the last example both arguments have count 2. The first item of the left argu-
ment, 2, is added to the first item of the right argument,(5 6; 7 8 9), while
the second argument of the left argument, 3 4, is added to the second argument of
the right argument, (10; 11 12). When adding the first items of the two lists,
the atom 2 is added to every atom in (5 6; 7 8 9) to give (7 8; 9 10 11),
and when adding the second items, 3 is added to 10 to give 13, and 4 is added to
both atoms of 11 12 to give 15 16 .

Plus can be defined recursively in terms of Plus for atoms as follows:

 Plus:{:[(@ x) & @ y; x + y; Plus'[x;y]]}

The arguments of an atom function must be conformable, or else a Length Error is
reported. The evaluation will also fail if the function is applied to atoms that are
not in its domain. For example,1 2 3 + (4;"a";5) will fail because 2 + "a"
fails with a Type Error.

Atom functions are not restricted to monads and dyads. For example, the triadic
function {x+y^z} is an atom function (“x plus y to the power z”).

A function can be atomic relative to some of its arguments but not all. For example,
the Index primitive @[x;y] is an atom function of its right argument but not its
left, and is said to be right-atomic, or atomic in its second argument). That is, for
every left argument x the projected monadic function x@ is an atom function. This
primitive function, like x[y], selects items from x according to the atoms in y,
and the result is structurally like y, except that every atom in y is replaced by the
item of x that it selects. A simple example is:

 2 4 -23 8 7 @ (0 4 ; 2)
(2 7
 -23)

Index 0 selects 2 , index 4 selects 7 , and index 2 selects -23 . Note that the items
of x do not have to be atoms.

It is common in descriptions of atom functions elsewhere in this manual to restrict
attention to atom arguments and assume that the reader understands how the de-
scriptions extend to list arguments.

32

Character Constant

A character constant is defined by entering the characters between double-quotes,
as in "abcdefg" . If only one character is entered the constant is an atom, other-
wise the constant is a list. For example, "a" is an atom. The notation ,"a" is
required to indicate a one character list. See Escape Sequences for entering non-
graphic characters in character constants.

Character String

Character string is another name for character vector.

Character Vector

A character vector is a simple list whose items are all character atoms. When dis-
played in an interactive session, it appears as a string of characters surrounded by
double-quotes, as in:

"abcdefg"

not as individual characters separated by semicolons and surrounded by parenthe-
ses (that is, not in list notation). When a character vector contains only one charac-
ter, this is distinguished from the atomic character by prepending the Enlist monad
(comma), as in ,"x".

Comparison Tolerance

Because floating-point values resulting from computations are usually only ap-
proximations to the true mathematical values, the Equal primitive is defined so
that x = y is 1 (true) for two floating-point values that are either near one an-
other or identical. To see how this works, first set the print precision so that all
digits of floating-point numbers are displayed.

 \p 18 see Print Precision in the chapter Commands

The result of the following computation is mathematically 1.0, but the computed
value is different because the addend 0.001 cannot be represented exactly as a
floating-point number.

K Reference Manual 3: Terminology 33

 x: 0 initialize x to 0
 do[1000;x+:.001] increment x one thousand times by 0.001
 x the resulting x is not quite 1.000
0.9999999999999062

However, the expression x = 1 has the value 1, and x is said to be tolerantly
equal to 1:

 x = 1 is x equal 1?
1 yes

Moreover, two distinct floating-point values x and y for whichx = y is 1 are
said to be tolerantly equal. No nonzero value is tolerantly equal to 0. Formally,
there is a system constant E called the comparison tolerancesuch that two non-
zero values a and b are tolerantly equal if:

| a - b | £ E ´ max(| a | , | b |)

but in practice the implementation is an efficient approximation to this test. Note
that according to this inequality, no nonzero value is tolerantly equal to 0. That is,
if a=0 is 1 then a must be 0. To see this, substitute 0 for b in the above inequality
and it becomes:

| a | £ E ´ | a |

which, since E is less than 1, can hold only if a is 0.

In addition to Equal, comparison tolerance is used in the verbs Find, Floor, More,
Less, Match, the adverbs Over and Scan for monads, and the system function _in.

Conformable Data Objects

The idea of conformable objects is tied to atom functions like Plus, functions like
Form with behavior very much like atom functions, and functions derived from
Each. For example, the primitive function Plus can be applied to vectors of the
same count, as in

 1 2 3 + 4 5 6
5 7 9

but fails with a Length Error when applied to vectors that do not have the same
count, such as:

34

 1 2 3 + 4 5 6 7
length error
1 2 3 + 4 5 6 7
 ^

The vectors 1 2 3 and 4 5 6 are said to be conformable, while 1 2 3 and
4 5 6 7 are not conformable.

Plus applies to conformable vectors in an item-by-item fashion. For example,
1 2 3+4 5 6 equals (1+4),(2+5),(3+6) , or 5 7 9 . Similarly, Plus of
an atom and a list is obtained by adding the atom to each item of the list. For
example, 1 2 3+5 equals (1+5),(2+5),(3+5) , or 6 7 8 .

If the argument lists of Plus have additional structure below the first level then Plus
is applied item-by-item recursively, and for these lists to be conformable they must
be conformable at every level; otherwise, a Length Error is reported. For example,
the arguments in the following expression are conformable at the top level – they
are both lists of count 2 – but are not conformable at every level.

 (1 2 3;(4;5 6 7 8)) + (10;(11 12;13 14 15))

Plus is applied to these arguments item-by-item, and therefore both 1 2 3+10
and (4;5 6 7 8)+(11 12;13 14 15) are evaluated, also item-by-item.
When the latter is evaluated, 5 6 7 8+13 14 15 is evaluated in the process,
and since 5 6 7 8 and 13 14 15 are not conformable, the evaluation fails.

All atoms in the arguments to Plus must be numeric, or else Plus will fail with a
Type Error. However, the types of the atoms in two lists have nothing to do with
conformability, which is only concerned with the lengths of various pairs of sub-
lists from the two arguments.

The following function tests for conformability; its result is 1 if its arguments con-
form at every level, and 0 otherwise.

 conform:{ :[(@x) | @y ; 1
 (#x) = #y ; &/ x conform' y; 0]]}

That is, atoms conform to everything, and two lists conform if they have equal
counts and are item-by-item conformable (see Over Dyad in the chapter Adverbs
for the meaning of the derived function &/).

K Reference Manual 3: Terminology 35

Two objects x and y are said to conform at the top level if they are atoms or lists,
and have the same count when both are lists. For example, if f is a dyad then the
arguments of f' (that is, f-Each) must conform at the top level. More generally, x
and y are said to conform at the top two levels if they conform at the top level and
when both are lists, the itemsx[i] and y[i] also conform at the top level for
every index i; and so on.

These conformability concepts are not restricted to pairs of objects. For example,
three objects x, y, and z conform if all pairs x,y and y,z and x,z are conform-
able.

Console

Console refers to the source of messages to K and their responses that are typed in
a K session.

Dependencies

Dependencies provide spreadsheet-like formulas within applications. A dependency
is a global variable with an associated expression describing its relationship with
other global variables. The expression is automatically evaluated whenever the
variable is referenced and any of the global variables in the expression have changed
value since the last time the variable was referenced. If evaluated, the result of the
expression is the value of the variable. If not referenced, the value of this variable
is the last value it received, either by ordinary specification or a previous evalua-
tion of the dependency expression.

The dependency expression is an attribute of a global variable whose value is a
character string holding the dependency expression, for example:

 v..d: "b + c"

for “v is b+c”. For example:

 b: 10 20 30
 c: 100
 v..d: "b + c"
 v v has the valueb + c
110 120 130

36

 v[2]: 1000 v can be amended
 v
110 120 1000
 b[1]: 25 amend any part of b or c
 v once again, v has the valueb + c
110 120 130

And of course, b and c can also be dependencies. Note that relative referents like b
and c are not resolved in the attribute dictionary of v, but are entries in the same
directory as v. Moreover, the dependency expression on v cannot contain an ex-
plicit reference to v itself.

Dependent Variables

If a dependency expression is defined for a variable v then v is said to be directly
dependent on all those variables that appear in that expression and dependent on
all those variables than can cause it to be re-evaluated when it is referenced. Not
only is v dependent on all variables in its dependency expression, but on all vari-
ables in the dependency expressions of those variables, and so on.

Depth

The depth of a list is the number of levels of nesting. For example, an atom has
depth 0, a list of atoms has depth 1, a list of lists of atoms has depth 2, and so on.
The following function computes the depth of any data object:

 depth:{:[@ x; 0; 1 + |/ depth' x]}

That is, an atom has depth 0 and a list has depth equal to 1 plus the maximum depth
of its items. The symbols |/ denote Max-Over. When applied to a list of numeric
values, as in |/ w , the result is the largest value in w (see Over Dyad). For
example:

 depth 10 depth {x + y}
0 0
 depth 10 20 depth (10 20;30)
1 2

Depth is a useful notion that appears in several examples elsewhere in this manual.

K Reference Manual 3: Terminology 37

Dictionary

A dictionary is an atom that is created from a list of a special form, using the Make
Dictionary verb, denoted by the dot (.) . Each item in the list is a list of three items,
the entry, the value and the attributes. The entry is a symbol, holding a simple
name, that is, a name with no dots. The value may be any atom or list. The at-
tributes are themselves a dictionary, giving the attributes of the item. An entry may
have no attributes, or equivalently an empty dictionary (.()) or nil. A dictionary
can be indexed by any one of its symbols, and the result is the value of the symbol.
When a dictionary is a global variable it is also a directory on the K-tree, and its
entries are the global variables in that directory. See Make/Unmake Dictionary and
K-tree.

Dyad

A dyad (or dyadic function) is a function of two arguments. Dyadic verbs may be
used in either infix or prefix notation. However, defined dyadic functions must be
used in prefix notation only.

Empty List

The generic empty list has no items, has count 0, and is denoted by () . The empty
character vector is denoted "", the empty integer vector !0, the empty floating-
point vector 0#0.0, and the empty symbol vector 0#`. The distinction between
() and the typed empty lists is relevant to certain verbs (e.g. Match) and also to
formatting data on the screen.

Entry

The entries of a dictionary d are the symbols given by its enumeration, !d . A
global dictionary is a directory on the K-tree, and its entries are the global variables
in that directory.

38

Escape Sequence

An escape sequence is a special sequence of characters representing a character
atom. An escape sequence usually has some non-graphic meaning, for example the
tab character. An escape sequence can be entered in a character constant and dis-
played in character data. The escape sequences in K are the same as those in the C-
language, but often have different meanings. As in C, the sequence \b denotes the
backspace character, \n denotes the new-line character, \t denotes the horizon-
tal tab character, \" denotes the double-quote character, and \\ denotes the
back-slash character.

In addition, \o and \oo and \ooo where each o is one of the digits from 0
through 7, denotes an octal number. If the character with that ASCII value has
graphic meaning, that graphic is displayed, or if that character is one that can be
specified by one of the escape sequences in the first paragraph, that sequence is
displayed. For example:

 "\b\a\11" enter a character constant
 "\ba\t" \b displays as \b, \a as a, \11 as \t

Floating-Point Vector

A floating-point vector is a simple list whose items are all floating-point numbers.
When displayed in a K session, it appears as a string of numbers separated by
blanks, as in:

 10.56 3.41e10 -20.5

not as individual numbers separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty floating-point vector is denoted 0#0.0 .

Function Atom

A function can appear in an expression as data, and not be subject to immediate
evaluation when the expression is executed, in which case it is an atom. For ex-
ample:

K Reference Manual 3: Terminology 39

 f: + f is assigned Plus
 @ f f is an atom
1
 (f;102) f can be used like any other atom
(+;102)

Handle

A handle is a symbol holding the name of a global variable, which is a node in the
K-tree. For example, the handle of the name a_c..b is ̀ a_c..b . The term
“handle” is used to point out that a global variable is directly accessed. Both of the
following expressions are used to amend x:

 x: .[x; i; f; y]
 .[`x; i; f; y]

In the first, referencing x as the first argument causes its entire value to be con-
structed, even though only a small part may be needed. In the second, the symbol
`x is used as the first argument. In this case, only the parts of x referred to by the
index i will be referenced and reassigned. The second case is usually more efficient
than the first, sometimes significantly so. In the case where the value of x is a
directory, referencing the global variable x causes the entire dictionary value to be
constructed, even though only a small part of it may be needed. Consequently, in
the description of Amend, the symbol atoms holding global variable names are
referred to as handles.

Homogeneous List

A homogeneous list is one whose atoms are all of the same type. For example, a
character vector is a homogeneous list of depth 1. A list of integers is one whose
atoms are all integers. Similarly for a list of characters, or floating-point numbers,
or symbols.

Integer Vector

An integer vector is a simple list whose items are all integers. When displayed in a
K session, it appears as a string of numbers separated by blanks, as in:

40

 10 20 -30 40

not as individual integers separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty integer vector is denoted !0 .

Item

An item is a component of a list, and may be either an atom or a list. The item of x
at index position i is called the ith item and is denoted by x[i].

If an item is a list then it also has items, and any of these items that are lists may
have items, and so on. Items of a list are sometimes called top-level items to distin-
guish them from items of items, items of items of items, etc., which are generally
referred to as items-at-depth . When it is necessary to be more specific, top-level
items are called items at level 1 or items at depth 1, items of items are called items
at level 2 or items at depth 2, and so on. Generally, an item is at depth n if it requires
n indices to reach it.

There is also the related concept of items of specified depth, meaning items-at-
depth that are a specified level above the bottom. For example, items of depth 1
would be lists of atoms within another list, as in:

 (1 2 3;(4 5; ("a";`bc)))

where the items of depth 1 are 1 2 3 and 4 5 and ("a";`bc). (The items at
depth 1 are 1 2 3 and (4 5;("a";`bc)) .) Generally, an item is of depth n if
there is atom within it that is at depth n, but no atom at depth n+1.

A list may contain one or more empty items (i.e. the nil value _n), which are
typically indicated by omission:

 (1 ; _n ; 2)
(1;;2)

K-Tree

The K-tree is the hierarchical name space containing all global variables created in
a K session. The initial state of the K-tree when K is started is a working directory
whose absolute path name is .k together with a set of other top-level directories
containing various utilities. The working directory is for interactive use and is the

K Reference Manual 3: Terminology 41

default active, or current, directory. Each application should define its own top-
level directory that serves as its logical root, using a name which will not conflict
with any other top-level application or utility directories present. Every subdirectory
in the K-tree is a dictionary that can be accessed like any other variable, simply by
its name. The root directory has no name, but can be accessed by the expression
.` (“dot back-quote”).

Left-Atomic Function

A left-atomic function f is a dyad f that is atomic in its left, or first, argument. That
is, for every valid right argument y, the monadf[;y] is atomic.

List

A list is one of the two fundamental data types, the other being the atom. The
components of a list are called items (see Item). See Nouns in the chapter Syntax.

Matrix

A matrix is a rectangular list of depth 2. An integer matrix is one whose atoms are
all integer atoms. Similarly for character matrix, floating-point matrix, and symbol
matrix.

Monad

A monad, or monadic function, has one argument.

Nil

Nil is the value of an unspecified item in a list formed with parentheses and semi-
colons. For example, nil is the item at index position 2 of (1 2;"abc";;`xyz).
Nil is an atom; its value is _n , or *(). Nils have special meaning in the right
argument of the primitive function Index and in the bracket form of function appli-
cation.

42

Nilad

A nilad, or niladic function, has no arguments.

Numeric List

A numeric list is one whose atoms are either integers or floating-point numbers.
For example, the arguments to Plus and Times are numeric lists.

Numeric Vector

A numeric vector is a list that is either an integer vector or a floating-point vector.

Primitive Function

A primitive function is either the dyad or monad of a simple verb, where a simple
verb is one of the symbols + , - , * , % , | , & , ̂ , < , > , = , ! , # , _,~ , $, ? , @ ,
. and , .

Rank

The rank of x is the number of items in its shape, namely #^x . The rank of an atom
is always 0, and that of a list is always 1 or more. If the rank of a list is n, then the
list must be rectangular to depth n. The rank of a matrix is 2. The rank of a dictio-
nary d is defined to be *^d[].

Rectangular List

A list of depth 2 is said to be rectangular if all its items are lists of the same count.
For example:

 (1 2 3; "abc"; `x `y `z; 5.4 1.2 -3.56)

is a rectangular list. The shape of a rectangular list of depth 2 has two items, the
first being the count of the list and the second the count of any item.

 ^ (1 2 3; "abc"; `x `y `z; 5.4 1.2 -3.56)
 4 3

K Reference Manual 3: Terminology 43

Analogously, a list of depth 3 is rectangular if all items have depth 2 and all items
of items are lists of the same count. The shape of a rectangular list of depth 3 has
three items, the first being the count of the list, the second the count of any item,
and the third the count of any item of any item. For example:

 ((1 2; `a `b; "AB"); ("CD"; 3 4; `c `d))

is a rectangular list of depth 3 and its shape is:

 ^ ((1 2; `a `b; "AB"); ("CD"; 3 4; `c `d))
 2 3 2

Rectangular lists of any depth can be defined.

It is possible for a list of depth d to be rectangular to depth n, where n is less than
d. For example, the following list is of depth 3 and is rectangular to depth 2:

 ((0 1 2; `a; "AB"); ("CD"; 3 4; `c `d))

This list has two items, each of which has three items, but the next level of items
vary in count. The shape of this list has only two items, the first being the count of
the list and the second the count of any item:

 ^ ((0 1 2; `a; "AB"); ("CD"; 3 4; `c `d))
 2 3

The list x is rectangular to depth n if its shape has n items, that is if n equals #^x .

Right-Atomic Function

A right-atomic function f is a dyad that is atomic in its right, or second, argument.
That is, for every valid left argument x, the monadic function f[x;] is an atom
function (see Fixing Function Arguments in the chapter Functions).

Script

A script file, or script for short, is a source file for an application or utility. It is a
text file of function definitions and statements for execution, possibly including
commands to load other scripts or operating system commands (see Load and OS
Command in the chapter Commands). The typical way to start an application is to
give the name of its start-up script in the command that starts the K process.

44

Simple List

A simple list is a list whose items are all atoms, i.e. a list of depth 1 (see Depth).
The atoms need not be of the same type.

Simple Vector

A simple vector is a list which is either a character vector, floating-point vector,
integer vector, or symbol vector. See also Vector Notation.

String

See Character String.

String-Atomic Function

A string-atomic function f is like an atom function, except that the recursion stops
at strings rather than their individual atomic characters.

String Vector

A string vector is a list whose items are all character strings.

Symbol

A symbol is an atom which holds a string of characters, much as an integer holds a
string of digits. For example, `abc denotes a symbol atom. This method of form-
ing symbols can only be used when the characters are those that can appear in
names. To form symbols containing other characters, put the contents between
double quotes, as in `"abc-345" .

A symbol is an atom, and as such has count 1; its count is not related to the number
of characters that appear in its display. The individual characters in a symbol are
not directly accessible, but symbols can be sorted and compared with other sym-
bols. Symbols are analogous to integers and floating-point numbers, in that they
are atoms but their displays may require more than one character. (If they are needed,
the characters in a symbol can be accessed by converting it to a character string.)

K Reference Manual 3: Terminology 45

Symbol Vector

A symbol vector is a simple list whose items are all symbols. When displayed in a
K session, it appears as a string of symbols separated by blanks, as in:

 `a `b `x_y.z `"123"

not as individual symbols separated by semicolons and surrounded by parentheses
(that is, not in list notation). The empty symbol vector is denoted 0#` .

Trigger

A trigger is an expression associated with a global variable that is executed imme-
diately whenever the value of the variable is set or modified. The purpose of a
trigger is to have side effects, such as setting the value of another global variable.
For example, suppose that whenever the value of the global variable x changes, the
new value is to be sent to another K process where it is to become the new value of
the 0th item of the variable b. This trigger is set simply by placing the expression
on the appropriate node of the K-tree:

 x..t: "pid 3: (`b; 0; :; x)"

where pid is the identifier of the other process. Note that relative referents like b
are not resolved in the attribute dictionary of x, but are entries in the same directory
as x.

Valence

The valence of a function is the number of its arguments. For example, the valence
of a tetrad is 4, of a triad 3, of a dyad 2, of a monad 1, and of a nilad 0. A function
called with the wrong number of arguments will cause a Valence Error to be re-
ported.

Vector

A list whose items are all of the same type is called a vector of that type. Thus we
have integer vectors, floating-point vectors, character vectors, symbol vectors, and
string vectors.

46

Vector Notation

An integer or floating-point vector constant can be defined by putting the atoms
next to one another with at least one space between each atom. For example, for
the integer vector 1 -2 3 :

 # 1 -2 3 a vector with 3 items
3
 1 -2 3[1] item 1 of the vector
-2
 # 3 4 5.721 1.023e10 a vector with 4 items
4

Note that only one item of a floating-point vector defined by vector notation has to
be given in decimal or exponential notation. The other items, if whole numbers,
can be given in integer format, such as the items 3 and 4 in the above floating-point
vector. For example, 1 2 3.0 4 is a floating-point vector, while 1 2 3 4 is
an integer vector.

Characters appear between double-quote marks for string vectors. Items in symbol
vectors need not be delimited by spaces, since the back-quote character serves to
distinguish them.

 `one`two`three #"Kx Systems"
`one `two `three 10

One-item vectors employ the comma in their notation, as in:

 ,"a" ,`abc ,3.14159265

Empty vectors are denoted as !0, 0#0.0, "" and 0#` for integer, floating-point,
string and symbol vectors, respectively.

K Reference Manual 47

CHAPTER 4

VERBS

Amend Item
@[d; i; f; y]
@[d; i; :; y]
@[d; i; f]

Description

Modify the items of the list d at indices i with f and, if present, the atom or list y,
and similarly for the dictionary d at entries i.

Arguments

The first argument d is either a symbol atom, dictionary, or any list, and the second
argument i is either nonnegative integer or symbolic. The third argument f is any
monadic or dyadic function; the first of the above expressions corresponds to dy-
adic f and the third to monadic f. The argument y, if present, is any atom or list for
which i and y are conformable, and where items-at-depth in y corresponding to
atoms in i must be valid right arguments of f.

Definition

If the first argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
first argument (but see Handle in the chapter Terminology). In addition, the modi-
fied value becomes the new value of the global variable, and the symbol is the
result. The first argument is assumed to be a dictionary or list for the remainder of
this definition.

48

The description that follows starts with the case of dyadic f. The second of the
above expressions can be viewed as a special case of the first expression, where the
dyadic function represented by the colon simply returns its right argument, i.e.
{[x;y] y}. The purpose of the first expression is to modify items of d selected
by i with values of f applied to those items as left argument and items-at-depth in y
as right argument. The second expression simply replaces those items with items-
at-depth in y. The third expression, where there is no y and f is monadic, replaces
each of those items with the values of f applied to it.

In the case of a left argument list d, Amend Item permits modification of one or
more items of that list by a function f and, when f is dyadic, items-at-depth in y. The
result is a copy of d with those modifications. For example:

 d:9 8 7 6 5 4 3 2 1 0
 i:2 7 1 8 2 8
 y:5 3 6 2 7 4
 @[d; i; +; y]
9 14 19 6 5 4 3 5 7 0

This result is developed as follows. Starting at index 0 of i, item d[i[0]] is
replaced with d[i[0]]+y[0], i.e. d[2] becomes7+5, or 12. Thend[i[1]]
is replaced withd[i[1]]+y[1], i.e. d[7] becomes 2+3, or 5. Continuing in
this manner, d[1] becomes 8+6, or 14, d[8] becomes 1+2, or 3, d[2] be-
comes 12+7, or 19 (modifying the previously modified value 12), and d[8] be-
comes 3+4, or 7 (modifying the previously modified value 3).

In general, i can be any atom or list whose atoms are valid indices of d, i.e. from the
list !#d, and i and y must be conformable. However, the function is not an atom
function. Instead, the function proceeds recursively through i and y as if they were
the arguments of a dyadic atom function, but whenever an atom of i is encountered,
say k, the current value of d[k] is replaced by f[d[k];z], where z is the item-
at-depth in y that was arrived at the same time as k. The result is the modified list.
For example:

 d: 9 8 7
 i: (0; (1;2 2))
 y: ("abc"
 ((1.5; `xyz)
 (100; (3.76; `efgh))))

K Reference Manual 4: Verbs 49

Before evaluating Amend Item for this data, compare the structures of i and y to
see that the 0 in i goes with "abc" in y, the 1 in i goes with (1.5;`xyz) in y, the
first 2 of 2 2 in i goes with 100 in y, and the second 2 of2 2 in i goes with
(3.76;`efgh) in y. Now:

 @[d; i; ,; y] f is Join
((9;"a";"b";"c") Join 9 and "abc"
 (8;1.5;`xyz) Join 8 and (1.5;`xyz)
 (7;100;3.76;`efgh)) Join 7 and 100, then join with (3.76;`efgh)

The general case of @[d; i; f; y]

The general case of Amend Item for dyadic f can be defined recursively as follows,
based on the definition for an atom second argument:

 AmendItem:{[d;i;f;y] :[@ i; @[d; i; f; y]
 AmendItem/[d; i; f; y]]]}

Note the application of Over to AmendItem, which requires that whenever i is not
an atom, either y is an atom or #i equals #y. Over is used to accumulate all changes
in the first argument d.

The case of @[d; i; :; y]

The second case simply replaces the items of d with items-at-depth in y. In effect,
the dyadic case for the function that simply returns its right argument as its result,
i.e. {[x;y] y}. For example:

 d:9 8 7 6 5 4 3 2 1 0
 i:2 7 1 8 2 8
 y:50 30 60 20 70 40
 @[d;i;:;y]
9 60 70 6 5 4 3 30 40 0

This result is developed as follows. Starting at index 0 of i, item d[i[0]] is
replaced withy[0], i.e. d[2] becomes 50. Thend[i[1]] is replaced with
y[1], i.e. d[7] becomes 30. Continuing in this manner, d[1] becomes 60, d[8]
becomes 20,d[2] becomes 70 (overwriting the previous change to 50), and d[8]
becomes 40 (overwriting the previous change to 20).

50

The case of @[d; i; f]

The third case of Amend Item, for a monad f, is similar to the case for dyadic f, but
simpler. As the function proceeds recursively through i, whenever an atom of i is
encountered, say k, the current value ofd[k] is replaced byf[d[k]]. The re-
sult is the modified list. As in the dyadic case, if an index k of d appears more than
once in i, thend[k] will be modified more than once.

Facts About Amend Item

If an index of d appears more than once in i, then that item of d will be modified
more than once. The above definition in terms of Over gives the correct order in
which the replacements are made.

The function f is applied separately for each atom in i.

The cases of Amend Item with a function f are sometimes called Accumulate Item
because the new items-at-depth are computed in terms of the old, as in
@[x;2 6;+;1], where items 2 and 6 are incremented by 1.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom of the right argument is not a valid index of the left argu-
ment.

Length Error if the second argument i and the last argument y are not conformable.

Rank Error if the object being modified is a non-dictionary atom.

Type Error if any atom of i is not an integer, symbol or nil.

K Reference Manual 4: Verbs 51

Amend
.[d; i; f; y]
.[d; i; :; y]
.[d; i; f]

Description

Modify the items-at-depth in list d at indices i with f and, if present, the atom or list
y, and similarly for items-at-depth at indices1_ i in the dictionary entries *i .

Arguments

The first argument d is either a dictionary, symbol atom, or any list. Each atom of
the second argument i is either nonnegative integer or symbolic. The special case
of an atom d other than a dictionary or symbol together with the empty list i is
permitted. The relationships between d and i are the same as for Index.

The third argument f is any monad or dyad; the first of the above expressions cor-
responds to dyadic f and the third to monadic f. The argument y, if present, is any
atom or list; i and y must be conformable in a sense described below, and items-at-
depth in y corresponding to paths in i must be valid right arguments of f.

Definition

In the case of a left argument list d, Amend modifies one or more items-at-depth in
that list by a function f. The result is a copy of d with those modifications.

If the left argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology). In addition, the modi-
fied value becomes the new value of the global variable named in the handle, and
the symbol is the Amend result.

If i is a nonnegative integer atom then the ith item of d is amended. If i is a symbol
atom then d must be a dictionary or handle of a directory and the ith entry is amended.
If d is an atom other than a dictionary or symbol then i must be the empty list, and
d is amended. If d is a list and i is nil then all of d is amended, but one item at a
time, as if i was !#d.

The remainder of this section assumes that both d and i are non-empty lists. It is
also assumed that the reader is familiar with the definition of Index.

52

The description that follows starts with the case of dyadic f. The expression above
with the colon in third position can be viewed as a special case of the first expres-
sion, where the dyadic function represented by the colon simply returns its right
argument, as in {[x;y] y}. The items-at-depth in d that are to be replaced are
selected by i just like in Index, i.e.d.i . For monadic f, each selected item-at-
depth is replaced by the result of f applied to that item. If y is present the selection
proceeds as before, but with d.i and y together, as if they were the arguments of
a dyadic atomic function. When the selection of an item-at-depth in d is about to be
made, we have also arrived at an item-of-depth in y. In the expression above with
the colon, the item-at-depth in d is simply replaced by that item-at-depth in y. In the
case of dyadic f, the item-at-depth in d is replaced by the result of applying f with
the item-at-depth in d as the left argument and the item-at-depth in y as the right
argument.

The case where i is a non-negative integer vector (a single path)

If the second argument i is a nonnegative integer vector then a single item at depth
#i in d is replaced. For example:

 (5 2.14; "abc") . 1 2 Index to select "c"
"c" selected item-at-depth
 .[(5 2.14; "abc"); 1 2; ,; "xyz"] append "xyz" to "c"
(5 2.14 the result is the amended list
 ("a"
 "b"
 "cxyz")) amended item-at-depth

The case where the items of i are non-negative integer vectors

The following is an example of cross-sectional amending, and can be reduced to a
series of single path amends like the first case above:

 d:((1 2 3; 4 5 6 7)
 (8 9; 10; 11 12)
 (13 14; 15 16 17 18; 19 20))
 i:(2 0; 0 1 0)
 y:(100 200 300; 400 500 600)
 r:.[d; i; ,; y]

The following display of d adjacent to r provides easy comparison:

K Reference Manual 4: Verbs 53

 d r
((1 2 3 ((1 2 3 400 600
 4 5 6 7) 4 5 6 7 500)
 (8 9 (8 9
 10 10
 11 12) 11 12)
 (13 14 (13 14 100 300
 15 16 17 18 15 16 17 18 200
 19 20)) 19 20))

The shape of y is2 3, the same shape as the cross-section selected byd . i.
The (j;k)th item of y corresponds to the path (i[0;j];i[1;k]). The first
single path Amend is equivalent to:

 d: .[d; (i . 0 0; i . 1 0); ,; y . 0 0]

(since the amends are being done individually, and the assignment serves to cap-
ture the individual results as we go), or:

 d: .[d; 2 0; ,; 100]

and item d . 2 0 becomes 13 14,100, or 13 14 100. The next single path
Amend is:

 d: .[d; (i . 0 0; i . 1 1); ,; y . 0 1]

or

 d: .[d; 2 1; ,; 200]

and item d . 2 1 becomes15 16 17 18 200. Continuing in this manner,
item d . 2 0 becomes 13 14 100 300 (modifying the previously modified
value 13 14 100); item d . 0 0 becomes 1 2 3 400; item d . 0 1 be-
comes 4 5 6 7 500; and, finally, item d . 0 0 becomes 1 2 3 400 600
(modifying the previously modified value 1 2 3 400).

The case of .[d; i; :; y]

The second case of Amend, where the colon appears in place of the dyadic function
f, simply replaces the items-at-depth in d with items-at-depth in y. Repeating the
earlier example with colon in place of Join:

54

 d:((1 2 3; 4 5 6 7)
 (8 9; 10; 11 12)
 (13 14; 15 16 17 18; 19 20))
 i:(2 0; 0 1 0)
 y:(100 200 300; 400 500 600)
 r:.[d; i; :; y]

The following display of d next to r provides easy comparison:

 d r
((1 2 3 ((600 replaced twice
 4 5 6 7) 500) replaced once
 (8 9 (8 9
 10 10
 11 12) 11 12)
 (13 14 (300 replaced twice
 15 16 17 18 200 replaced once
 19 20)) 19 20))

Note that there are multiple replacements of some items-at-depth in d, correspond-
ing to the multiple updates in the earlier example.

The case of .[d; i; f]

The third case of Amend, for a monadic function f, replaces the items-at-depth in d
with the results of applying f to them. Repeating the earlier example with Negate in
place of Join:

 d:((1 2 3; 4 5 6 7)
 (8 9; 10; 11 12)
 (13 14; 15 16 17 18; 19 20))
 i:(2 0; 0 1 0)
 y:(100 200 300; 400 500 600)
 r:.[d; i; -:]

The following display of d next to r provides easy comparison:

K Reference Manual 4: Verbs 55

 d r
((1 2 3 ((1 2 3 negated twice
 4 5 6 7) -4 -5 -6 -7) negated once
 (8 9 (8 9
 10 10
 11 12) 11 12)
 (13 14 (13 14 negated twice
 15 16 17 18 -15 -16 -17 -18 negated once
 19 20)) 19 20))

Note that there are multiple applications of f to some items-at-depth in d, corre-
sponding to the multiple updates in the first example.

The general case

In general, the argument i can be any atom that is a valid index of d, i.e. one of !#d,
or a list representing paths to items at depth #i in d. The function proceeds recur-
sively through i[0] and y as if they were the arguments of a dyadic atom function,
except that when arriving at an atom in i[0], that value is retained as the first item
in a path and the recursion continues on with i[1] and the item-at-depth in y that
had been arrived at the same time as the atom in i[0]. And so on until arriving at
an atom in the last item of i. At that point a path p into d has been created and the
item at depth #i selected by p, namely d . p, is replaced by f[d . p;z] for
dyadic f or f[d . p] for monadic f, where z is the item-at-depth in y that had
been arrived at the same time as the atom in the last item of i.

The general case for dyadic f can be defined recursively by partitioning the index
list into its first item and the rest:

 Amend:{[d;F;R;f;y] :[_n ~ F; Amend[d; !#d; R; f; y]
 0 = # R; @[d; F; f; y]
 @ F; Amend[d @ F; *R; 1_R; f; y]
 Amend[;; R;;]/[d; F; f; y]}

Note the application of Over to Amend, which requires that whenever F is not an
atom, either y is an atom or #F equals #y. Over is used to accumulate all changes
in the first argument d.

56

Facts About Amend

In the general case of a one-item list i, .[d;i;f;y] is identical to @[d;*i;f;y]
and .[d;i;f] is identical to @[d;*i;f].

In the case of a non-empty index list i, the function f is applied once for every path
generated from i, just as the above definition indicates. However, if the index i is
the empty list, i.e. (), then Amend is “Amend Entire”. That is, the entire value in
d is replaced, in the first case .[d;();f;y] with f[d;y], in the second case
.[d;();:;y] with y, as in d:y, and in the third case .[d;();f] with f[d].
For example:

 .[2 3; (); ,; 4 5 6]
2 3 4 5 6

On the other hand, if i is the enlist of nil, then according to the above definition
Amend is “Amend Each”. That is, every item of d is modified by separate applica-
tions of f in the first and third cases of Amend, and by the corresponding items of y
in the second case. For example:

 .[2 3; ,_n; ,; 4 5]
(2 4
 3 5)

The cases of Amend with a function f are sometimes called Accumulate because
the new items-at-depth are computed in terms of the old, as in .[x; 2 6; +; 1],
where item 6 of item 2 is incremented by 1.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any path in the index list i is not a valid path of the first argument.

Length Error in the cases of dyadic f and : if i and y are not conformable as de-
scribed above.

Type Error if any atom of i is not an integer or symbol or nil.

K Reference Manual 4: Verbs 57

Apply (Monadic)
f @ x

Arguments

The left argument f is any monadic function or atom symbol holding the global
name of a monadic function, and the right argument is any argument of f.

Definition

Apply (Monadic) applies the function f to the argument x. For example:

 { x ^ 2 } @ 3
9.0

If f is a symbol atom then it must hold the name of a global variable whose value is
a monadic function, and that function is applied.

Error Trap (Monadic)

Error Trap (Monadic) is denoted @[f; x; :] and defined in the same way as
Error Trap under Apply.

Facts about Apply (Monadic)

f@x is identical to f . ,x.

Error Reports

Type Error if the symbol d is not a handle, i.e. does not hold the name of an existing
global variable whose value is a monadic function.

Valence Error if f is niladic.

58

Apply
f . x

Arguments

The left argument f is any function or atom symbol holding the name of a function,
and the right argument x is an argument list of f.

Definition

Apply applies the left argument function f to the argument list x. If f has 1 argu-
ment then x has 1 item and f is applied to the argumentx[0]. If f has 2 argu-
ments then x has 2 items and f is applied to the first argumentx[0] and the sec-
ond argumentx[1], and so on. If the left argument is a symbol atom then it must
hold the name of a function, such as `g, and that function – g in this example – is
applied to the argument list.

Assume f is a function, not a symbol. In terms of the bracket-semicolon notation
for function application (see Apply in the chapter Amend, Index, Apply and As-
sign), f . x is identical to:

 f[x[0]; x[1]; �; x[-1+#x]]

for functions with valence at least 2, and

 f[x[0]]

for monadic functions. See below for niladic functions.

If f is a symbol atom then it must hold the name of a global variable whose value is
a function, and that function is applied.

Niladic Functions

Niladic functions are handled differently. The pattern above suggests that the empty
list () is argument list to niladic f, butf . () is a case of Index, and the result
is simply f. Niladic Apply is denoted byf . ,_n, i.e. the right argument is the
enlisted nil. For example:

 a: 2 3
 b: 10 20
 {a + b} . ,_n
12 23

K Reference Manual 4: Verbs 59

Error Trap

When debugging an application it is helpful for execution to be suspended when an
error in a function occurs so that the problem can be analyzed (see the chapter
Controls and Debugging for discussions of suspended execution). However, in a
production application, rather than suspending execution, it is often preferable to
log the error and either continue on or exit the application, whichever is appropri-
ate. This behavior can be obtained with a variant of Apply known as Error Trap.

For a function of arbitrary valence, Error Trap is denoted by .[f; x; :] and
always produces a two-item list. Iff . x evaluates successfully then .[f; x; :]
is identical to (0;f . x), i.e. 0 indicating success followed by the result of
applying f to x. However, if the evaluation off . x fails then .[f; x; :] is
(1;"text"), i.e. 1 indicating failure followed by a character vector holding the
text of the error message that would ordinarily be displayed in the session log. For
example:

 .[%; (3;4); :]
(0;0.75)
 .[%; (3;0); :]
(0;0i)
 .[=; 0; :]
(1;"valence")

Facts About Apply

If f is a monadic function, then f . ,y is identical to f@y , i.e. Apply (Monadic).

Error Reports

Type Error if the symbol d is not a handle, i.e. does not hold the name of an existing
global variable whose value is a function.

Valence Error if the count of x is greater than the valence of f.

60

Atom
@ x

Argument

Any atom or list.

Definition

Atom applies to any atom or list, returning 1 if the object is an atom, and 0 if the
object is a list.

 @ 1
1
 @ 2 3 this is a 2-item vector
0
 @ "Z"
1
 @ "" this is the empty character vector
0
 @ {x+y} functions are atomic
1
 @ (+;-) this is a 2-item function list
0
 @ `symbol
1
 @ .((`a;2);(`b;3)) this is a dictionary with 2 entries, `a and ̀ b
1
 @ _n nil is an atom
1

K Reference Manual 4: Verbs 61

Count
x

Argument

Any atom or list.

Definition

Count yields the number of items in a list argument. The result is 1 for an atom.

 # 3 1 4 2
4
 ms:(8 1 6;3 7;4 9 2)
 # ms
3
 # "A" "A" is a character atom
1
 # ,"A" a list with one item
1
 # "count" another character vector
5

62

Divide
x % y

Arguments

The arguments x and y are conformable numeric atoms or lists.

Definition

Divide is an atom function that produces x divided by y for atoms x and y. Integer
atoms are treated like floating-point atoms, and the result is always floating-point.

There is one difference from the common mathematical definition: 0%0 is defined
to be 0.0.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. The result could also be 0i or -0i, mean-
ing plus or minus infinity respectively, in the appropriate cases.

Error Reports

Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: Verbs 63

Drop / Cut
x _ y

Arguments

The left argument is an integer atom in the case of Drop or an integer vector in the
case of Cut. The right argument is an atom or list for Drop, or a list for Cut.

Definition

Drop is the case of x _ y where x is an integer atom. The result ofx _ y is to
drop the first x items of y if x is positive, or the last -x items of y if x is negative.

 1 _ "stares" -2 _ "stares"
"tares" "star"

If y is an empty list or an atom, Drop is an identity function. If x is not less than the
count of y, the result is the appropriate empty list.

 0 _ 7 88 _ "" 9 _ !6
7 "" !0

Cut is the case of x _ y where x is an integer vector. The items of x must be
indices to items of list y, in non-descending order. The effect of x _ y is to
partition y into sub-lists beginning at indices x.

 0 3 _ 0 1 2 3 4 5 a:"try to cut into words"
(0 1 2 m: & a = " "
 3 4 5) m
 0 4 _ 0 1 2 3 4 5 3 6 10 15
(0 1 2 3 (0,m) _ a
 4 5) ("try"
 0 4 _ "seashells" " to"
("seas" " cut"
 "hells") " into")

 " words")

Duplicates in x result in empty lists among the items of the result:

64

 1 1 3 _ !6
(!0
 1 2
 3 4 5)

The result always has the same number of items as the left argument.

Error Reports

Domain Error if the left argument is an integer vector but not in non-descending
order, or it contains any negative integers.

Int Error if the left argument is not an integer atom or vector, or if the left argument
is a vector and the right is an atom.

Length Error if the left argument is a vector containing invalid indices.

K Reference Manual 4: Verbs 65

Enlist
, x

Argument

Any atom or list x.

Definition

Enlist creates a one-item list containing x. The count of ,x is always 1, the first
item of ,x is identical to x, and the shape of ,x is 1 followed by the shape of x.

 x: 1 2 3
 ^ x the shape of x
,3
 y: , x
 ^ y the shape of ,x
1 3 1 followed by the shape of x
 x ~ * y Does x match the First of ,x ?
1 Yes.

66

Enumerate
! x

Argument

Nonnegative integer atom, symbol atom, character atom or string, or dictionary x.

Definition

For a nonnegative integer atom x, Enumerate produces a list of the x integers from
0 through x-1 in increasing order.

 ! 10 ! # (1 2; "abc"; `xwz)
0 1 2 3 4 5 6 7 8 9 0 1 2

These integers are indices into lists of length x. For example:

 list: "abcdefghij"
 # list
10
 list[!10]
"abcdefghij"

If a symbol x is the handle of a directory on the K-tree, then!x is a symbol vector
whose items are the entries in that directory. The result is nil for any other symbol
argument. Similarly for a dictionary x, the items of the symbol vector!x are the
entries in x.

The case of a character atom or string x is analogous to the symbol atom case. If x
holds the name of a directory in the host operating system, then !x is a string
vector whose entries hold the names of the entries in that directory. The result is nil
for any other character atom or string argument.

Error Reports

Domain Error if x is not a nonnegative integer atom, symbol atom, dictionary or
character string.

K Reference Manual 4: Verbs 67

Equal
x = y

Arguments

The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols.

Definition

Equal is an atom function, and for atoms x and y, the result of x=y is:

• 1 if x and y are numeric, and x is equal to y in the usual mathematical sense,
and 0 otherwise;

• 1 if x and y are the same character, and 0 otherwise;

• 1 if x and y are the same symbol, and 0 otherwise.

 3 = 3 "cat" = "rat"
1 0 1 1
 3 = -3 `abc = `abcdefg
0 0

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. That is, x=y is 1 if x and y are close in value, even if they are
actually distinct.

 3.0 = 3.1
0
 3.0 = 3.000000000001
0
 3.0 = 3.0000000000001
1

Error Reports

Length Error if the arguments are not conformable.

Type Error if applied to atoms that are not both numeric, or both characters, or both
symbols.

68

Find
d ? y

Arguments

The left argument d can be any list or nil, and the right argument y can be any atom
or list.

Definition

If y occurs among the items of d then d?y is the smallest index of all occurrences.
Otherwise, d?y is #d (the smallest nonnegative integer that is not a valid index
of d). When d is nil, the result is y.

 9 8 7 6 5 4 3 ? 7
2 7 is found
 9 8 7 6 5 4 3 ? 1
7 1 is not found
 ms: (8 1 6 ; "abcdef" ; 4 9 2 ; `x `y `z `w ; 4 9 2)
 ms ? 4 9 2
2 the first 4 9 2 is found
 words: ("canoe"
 "tug"
 "raft"
 "rowboat"
 "ark"
 "liner")
 words ? "raft"
2 "raft" is found
 words ? "submarine"
6 "submarine" is not found

Find uses Match for comparing items of d and y, and therefore comparisons of
numeric objects when at least one is floating-point are based on comparison toler-
ance.

Error Reports

Domain Error if d is atomic.

K Reference Manual 4: Verbs 69

First
* x

Argument

Any list or atom x.

Definition

The result of First is the first item of list x, or x itself if x is an atom..

 * "abc"
"a"
 * ("abc"; "defg"; "hijkl")
"abc"
 * ,,`pqr
,`pqr
 * `pqr
`pqr

First is also defined for empty vectors and the empty list. For each of the empty
vectors, the result is a suitable prototype for the left argument of Form:

 *!0 *0#0.0 *0#"" *0#`
0 0.0 " " `

 *()
(the result of *() is nil)

The last item of a list is obtained by the K idiom*|x called “First Reverse”, as
in:

 * | ("abc"; "defg"; "hijkl")
"hijkl"

70

Flip
+ x

Arguments

Any list for which all its list items have the same count, or any atom.

Definition

Flip applies to a list having a shape of length two or more, and interchanges the top
two levels of the list. Mathematically speaking, flip is matrix transpose. If the top
two levels of x have shape p and q, the top two levels of + x will have shape q
and p.

 m: 3 4 # ! 12
 m + m
(0 1 2 3 (0 4 8
 4 5 6 7 1 5 9
 8 9 10 11) 2 6 10

 3 7 11)
 ^ m ^ + m
3 4 4 3

 k: ((0 1 2;3);(4 5;6 7 8 9);(10 11;12))
 k + k
((0 1 2 item (0;0) ((0 1 2 item (0;0)
 3) item (0;1) 4 5 item (0;1)
 (4 5 item (1;0) 10 11) item (0;2)
 6 7 8 9) item (1;1) (3 item (1;0)
 (10 11 item (2;0) 6 7 8 9 item (1;1)
 12)) item (2;1) 12)) item (1;2)
 ^ k ^ + k
3 2 2 3

Atoms are permitted among the items of x, so long as all list items have the same
count. The result is as if each atom was first replicated n times, where n is the count
of list items.

 a: (1 2 3 b: (1 2 3
 "C" "CCC"
 `x `y `z) `x `y `z)

K Reference Manual 4: Verbs 71

 + a + b
((1;"C";`x) ((1;"C";`x)
 (2;"C";`y) (2;"C";`y)
 (3;"C";`z)) (3;"C";`z))

Flip is an identity function for atoms:

 + `abc + 67 +{x*y}
`abc 67 {x*y}

If all items of x are atoms then+ x is identical to x.

 + `a`b`c`d
`a `b `c `d

Error Reports

Length Error if the counts of the list items are not all equal.

72

Floor
_ x

Argument The argument is any numeric atom or list.

Definition

Floor is an atom function. Its definition depends on the greatest and least represent-
able integers for the computer on which K is running. For those computers with 32-
bit integers, these values are:

 G: 2147483647 i.e., _ -1+2^31
 S:-2147483648 i.e., _ - 2^31

Floor is defined for all numeric values which are greater than or equal to S, and less
than G. The value of_ x for such a numeric atom x is the largest representable
integer that is not greater than x. For example:

 _ 4.6 _ -4.6
4 -5

Comparison tolerance is used when floating-point arguments are near integer val-
ues. Namely, if a floating-point argument that is tolerantly equal to but actually less
than an integer, then its floor is that integer, not that integer Minus 1. In the follow-
ing, the decimal number in the first row is not tolerantly equal to 2, but the one in
the second row is:

 2 = 1.999999999999 _ 1.999999999999
0 1
 2 = 1.9999999999999 _ 1.9999999999999
1 2

Compare this primitive function with the system function_floor, whose result
is also the integer part of its argument, but as a floating-point number and without
using comparison tolerance.

Error Reports

Domain Error if a numeric argument is either less than the least representable inte-
ger or greater than or equal to the greatest representable integer.

Type Error if the argument is not numeric.

K Reference Manual 4: Verbs 73

Format
$ x

Arguments

Any atom or list.

Definition

Format is an atom function. The result $ x is like x, except that every atom in x is
replaced with its character vector representation. For example:

 $ 0 9 7 6
(,"0"
 ,"9"
 ,"7"
 ,"6")
 $ "1234"
"1234"
 $ {[x;y] x+y}
"{[x;y] x+y}"
 $ 1.2e-34
"1.2e-34"

The results for floating-point numbers depend on the print precision setting (see
Print Precision in the chapter Commands).

 \p 4 set print precision
 $ 1.2345678
"1.235" only 4 digits in the result
 \p 6
 $ 1.2345678
"1.23457" now there are 6 digits in the result
 \p 10
 $ 1.2345678
"1.2345678" now there are 8 digits (no padding to 10)

74

Format (Dyadic)
x $ y

Arguments

The arguments are conformable atoms and lists; the left argument is numeric and
the right argument consists of integers, floating-point numbers, and symbols.

Definition

Format is an atom function, whose result for an atom left argument and an atom
right argument is always a character vector.

Integer left argument

The right argument may be integer, floating-point, symbol, or string. The effect is
as follows: Apply $ to the atom y (see Format) to produce an intermediate result t.
Then if the integer x is positive, start at the right-most character in t and, moving to
the left, select x characters from t. If x is greater than #t, select all of t and append
to the left with x-#t blanks. For example:

 2 $ 2.345 7 $ `abcd
"45" " abcd"

If x is negative, start at the left-most character of t and move to the right, appending
with blanks on the right if necessary.

Floating-point left argument

The right argument must be numeric, i.e. either integer or floating-point. Let n be
the first decimal digit in x, e.g. n is 2 if x is 5.27. Apply $y to the atom y (see
Format) to produce an intermediate result t. If t has more than n decimal digits, it
is rounded to n decimal digits. If it has fewer, say m, then n-m zeros are appended
to the right. If y is an integer then a decimal point and n zeros are appended to the
right. Finally, use the integer portion of x to select from or extend this intermediate
result in the same manner as the integer left argument case. For example:

 7.2 $ 2.345 7.2 $ 714
" 2.35" " 714.00"

Negative x, in addition to causing selection from left to right and padding on the
right, specifies exponential format. For example:

K Reference Manual 4: Verbs 75

 -9.2 $ 2.345 -9.2 $ 714
"2.35e+00 " "7.14e+02 "

Error Reports

Domain Error when an atom left argument and atom right argument are not one of
the combinations listed in the definition, except for the type error case below.

Length Error if the arguments are not conformable.

Type Error in Format for a floating-point left argument and symbol right argument.

76

Form
x $ y

Arguments

The arguments are conformable atoms and lists. Any atom in the left argument
must be one of the five prototypes 0, 0.0, ̀ , " ", and {}. The right argument is
a character atom or list.

Definition

Form converts from character type to K data types. The left argument specifies the
K type of the result, while the value of the result comes from the right argument.

When the left argument is an atom it must be one of the five K prototypes given
above. The definition of Form for these five cases are as follows:

Case Definition of x $ y

0 The right argument consists of a sequence of characters that form a valid
integer representation. The result is that integer. For example, 0$"27"
is 27.

0.0 The right argument contains a sequence of characters that form a valid
integer or floating-point number representation. The result is that float-
ing-point number. For example, 0.0$"3.4" is 3.4 and 0.0$"27"
is 27.0.

" " " "$y equals y for all character vectors y.

` `$y is the character string with the same contents as the character vec-
tor y. For example, ̀$"abc" is ̀ abc.

{} The right argument is any character vector whose contents are a valid K
expression, and the result of {}$y is the result of evaluating that ex-
pression.

Form is like an atom function. However, unlike an atom function, as Form recur-
sively descends through its arguments, it evaluates a result a $v whenever it arrives
at an atom t from the left argument and character vector or atom v from the right
argument; it does not continue the descent into a character vector v to evaluate the
results a $v[i] for the character atoms in v. For example:

K Reference Manual 4: Verbs 77

 ` $ "abc"
`abc not `a `b `c
 (0; (0.0; `)) $ ("23"; ("23.4"; "abc"))
(23
 (23.4;`abc))

That is, Form can be defined recursively in terms of an atom left argument and
vector or atom right argument, as follows:

 Form:{ if[(@x) & ~ 1 < depth y; x $ y
 ~ 1 < depth y; x Form\: y
 x Form' y]}

Error Reports

Domain Error when an atom left argument and a vector right argument are not one
of the combinations listed in the definition.

Length Error if the arguments are not conformable.

78

Function Inverse
f ? y
?[f; y; x]

Description

Evaluation of the inverse function of the monadic function f. That is, if x equals
f ? y, then y equals f @ x.

Arguments

The argument f is a monadic numeric function. The argument y is a valid result of
the function f, i.e. there is an argument a for which y equals f @ a.

Definition

The system functions _exp and _log are inverse functions of one another, in that
if y equals _exp x then x equals _log y. That is, _log y equals (_exp)?y.
For example:

 (_exp) ? 2
0.6931472
 _log 2
0.6931472

Actually, f?y uses an approximation method and produces a result that is accu-
rate only to within a specified tolerance, which means that (_exp)?y and x _log y
differ by at most that tolerance.

In the next example, the function f@x does not have an inverse function for all x,
but instead has one inverse function for x less than 0.5, and another for x greater
than 0.5.

 f:{(x^2)+(-x)+(-1)}
 f ? 0
1.618034
 f 1.618034 the answer, which should be close to 0
2.5156e-08

The approximation method uses default initial approximations to the result which,
in this example and others like it, has the effect of choosing one of the two or more
inverse functions to be computed. The triadic form ?[f; y; x] must be used to
compute the other inverse functions. At the least, the initial approximations must

K Reference Manual 4: Verbs 79

in the range of the particular inverse function of interest, which can be accom-
plished with the triadic form by properly specifying the third argument x. In this
simple example it is enough to choose any value less than 0.5 as the third argument.
For example:

 ?[f; 0; 0.25]
-0.618034 another solution y of y = f 0
 f -0.618034 a check of the answer, which should be close to 0
2.5156e-08

The triadic form must also be used when the default initial approximation is not
close enough to the result, which can happen for functions with more complicated
graphs than those in the above examples.

The approximation method used in Function Inverse is the secant method, with up
to 20 iterations. The default initial approximations are 0.9999 and 0.9998, which
represent annual spreads of 10 and 20 basis points (0.01%) in financial models
where the result of the function f is a discount rate. The tolerance applied is 1e-6
times the magnitude of the argument y, that is 1/100 of a basis point. For the triadic
case ?[f; y; x], the initial approximations are x and 0.9999*x.

In general, the function f should be a monadic atom function with numeric argu-
ments and results, and then both ?[f;] and ?[f;;] are atom functions.

Since ? is a primitive verb, in situations where it cannot be determined from con-
text whether it represents a monadic or dyadic function, the dyadic case is assumed.
This assumption is not strict, however. For example, if f:? then f is dyadic, but
it can also be given three arguments to evaluate the other case of Function Inverse.
The reason that ambivalence is allowed here is that the functionality of the two
cases of Function Inverse is essentially the same.

Error Reports

Limit Error if the result is not produced in 20 iterations.

80

Grade Down
> x

Description

A permutation of !#x that sorts the items of x in non-ascending order.

Argument and Result

The argument x is any list. The result is a nonnegative integer vector with the same
count as x.

Definition

The result of >x is a permutation of !#x for which the items of x[>x] are in
non-ascending order. For example:

 > 3 1 4 2
2 0 3 1 permutation vector
 3 1 4 2[2 0 3 1]
4 3 2 1 reordering of 3 1 4 2 by the permutation vector

 ms : (8 1 6 ; 3 5 7 ; 3 9 2)
 >ms
0 2 1 permutation vector
 ms[> ms]
(8 1 6 8 comes before 3
 3 9 2 the 3’s are a tie, then 9 comes before 5
 3 5 7)

 "dozen"[> "dozen"]
"zoned"

When the items of x are distinct they can be rearranged in descending order and
there is only one permutation that will produce this arrangement. However, there
is always more than one when x has duplicate items, because while the indices of
duplicates must be grouped together in the permutation, they can arranged in any
way within the group. For example, "xuyus" can be arranged in non-ascending
order by both 2 0 1 3 4 and 2 0 3 1 4. The duplicate item "u" is at indices
1 and 3, which are grouped together in both permutations as 1 3 in one and 3 1 in
the other. The result of >"xuyus" is the first of these two, because the indices of
duplicates in x are always in increasing order in >x.

K Reference Manual 4: Verbs 81

Note that the permutation is the more generally useful result than sorting the argu-
ment directly because it often happens that several lists are to be reordered in the
same way, based on the sort order of one of them.

Any list can be sorted, and for Grade Down the sort order is determined as follows:

1) First sort the items in the order of all atoms first, followed by lists in decreasing
count, as in:

 > (1 4 3 2; 1.3 1.2 1.1; 3405; `a `b; "acb")
2 0 1 4 3

2) Within the group of atomic items, sort in the order: function atom first, then
symbol atom, character atom, floating-point atom, integer atom.

3) Within each group of list items with equal count, sort in the order: general lists,
including lists whose items are all functions, integer vectors, floating-point vec-
tors, character vectors, symbol vectors.

4) Within each atom group of like type defined in 2) other than functions, sort
according to the definitions of Equal and More. The sort order of function atoms is
not described here.

5) Within each vector group of like type defined in 3), sort lexicographically. That
is, first sort a group of vectors of the same type and count by their first items, as
described in 4; then within each group, sort vectors with the same first item by their
second items; and so on.

6) Sort items that are general lists of the same count lexicographically.

Facts About Grade Down

The indices of duplicate items in x are always in increasing order in >x.

Note that a list of characters vectors will not be sorted lexicographically, but first
by the counts of items and then lexicographically within each group of equal counts.
A symbol vector, which can be viewed as a string vector, is sorted lexicographi-
cally. For example:

82

 ("aaa";"bb";,"c";"d")[> ("aaa";"bb";,"c";"d")]
("d"
 "aaa"
 "bb"
 ,"c")
 `aaa `bb `c[> `aaa `bb `c]
`c `bb `aaa

Error Reports

Rank Error if the argument is an atom.

K Reference Manual 4: Verbs 83

Grade Up
< x

Description

The permutation of !#x that sorts items of the list x in non-descending order.

Argument and Result

The argument x is any list. The result is a nonnegative integer vector with the same
count as x.

Definition

The result of <x is a permutation of !#x for which the items of x[<x] are in non-
descending order. For example:

 < 3 1 4 2 ms:(8 1 6;3 5 7;4 9 2)
1 3 0 2 <ms
 3 1 4 2[1 3 0 2] 1 2 0
1 2 3 4 ms[<ms]
 "taped"[<"taped"] (3 5 7
"adept" 4 9 2

 8 1 6)

See Grade Down for a discussion of duplicate items. Like Grade Down, indices of
duplicate items in the argument x are in increasing order in the result. Also like
Grade Down, any list can be sorted with Grade Up. See Grade Down for a discus-
sion of the general sort order, but note that except for duplicates, the order given
there is the opposite of what it would be here.

Error Reports

Rank Error if the argument is an atom.

84

Group
= x

Arguments

Any list x.

Definition

Group produces a list of nonnegative integer vectors whose count is the number of
distinct items in the argument, and:

• in which each item of !#x appears once and only once in the result, and;

• i and j are in the same item of the result if x[i] matches x[j] (see
Match);

For example:

 = 2 1 2 2 1 1
(0 2 3 the indices of 2
 1 4 5) the indices of 1
 = "weekend"
(,0 the indices of "w" in "weekend"
 1 2 4 the indices of "e"
 ,3 the indices of "k"
 ,5 the indices of "n"
 ,6) the indices of "d"

Each item of the result corresponds to a distinct item in the argument, and within
each item the indices are in increasing order. Those distinct items are ?x, i.e. the
ith item of =x corresponds to the ith item of ?x (see Range). For instance, in the
previous example, the second item of the result, 1 2 4, holds the indices of "e"
in "weekend", and "e" is the second distinct item in "weekend".

The argument to Group can be any list, not just vectors. For example:

 =(9 2 3
 4 5
 9 2 3
 6 7 8
 4 5
 9 2 3)

K Reference Manual 4: Verbs 85

(0 2 5 items 0, 2, and 5 equal 9 2 3
 1 4 items 1 and 4 equal 4 5
 ,3) item 3 is 6 7 8

Facts about Range

?x is identical to x@*:'=x (see Range).

Error Reports

Rank Error if the argument is an atom.

86

Index Item, or At
d @ i

Arguments

The left argument d is either a symbol atom, a dictionary, or any list, and the right
argument is either nonnegative integer or symbolic.

Definition

If the left argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology).

Index Item is a right-atomic function. Every atom in the right argument must be a
valid index of d (one of !#d), or an entry in d for a dictionary d (one of !d). The
result is equivalent to replacing each atom of the right argument with the item of
the left argument whose index or entry is that atom. For example:

 "abcdefg" @ 4
"e"

 "abcdefg" @ 5 0 3 4 3
"faded"

 "abcdefg" @ (5 0;(3;,4 3))
("fa" items 5 and 0
 ("d" item 3
 ,"ed")) items 4 and 3

 (8 1 6; 3 5; 7 4 9 2) @ (2 1; 1 2 0)
((7 4 9 2 item 2
 3 5) item 1
 (3 5 item 1
 7 4 9 2 item 2
 8 1 6)) item 0

If d is a dictionary then the right argument is composed of the entries of d:

 d:.((`a;2 3 4);(`b;"abcdefg"))
 d @ `a
2 3 4

K Reference Manual 4: Verbs 87

 d @ `b `a
("abcdefg"
 2 3 4)

The general case of Index Item can be defined recursively as follows, based on the
definition for an atom right argument:

 IndexItem:{[d;i] :[@ i; d @ i; d IndexItem/: i]}

That is, if i is not an atom then apply Index Item to d and every item of i.

Since @ is a primitive verb, in situations where it cannot be determined from con-
text whether it represents a monadic or dyadic function, the dyadic case is assumed.
This assumption is not strict, however. For example, if f:@ then f is dyadic, but
it can also be given three or four arguments to evaluate Amend Item. The reason
that multi-valence is allowed here is that the functionality of Index Item and Amend
Item is closely related.

Facts about Index Item

d @ i is identical to d . ,i .

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom of the right argument is not a valid index of the left argu-
ment.

Type Error if any atom of the right argument is not an integer, symbol or nil.

88

Index, or Of
d . i

Arguments

The left argument d is either a dictionary, symbol atom, or any list. Each item of the
right argument is either nonnegative integer or symbolic. The special case of an
atom d other than a dictionary or symbol together with the empty list i is permitted.

Definition

If the left argument is a symbol atom then it must be a handle, and the definition
proceeds as if the value of the global variable named in the symbol is used as the
left argument (but see Handle in the chapter Terminology). If the right argument is
a nonnegative integer atom thend . i is the ith item of d, i.e. equalsd @ i. If
d is an atom other than a dictionary or symbol then i must be the empty list, and the
result equals d. It is also true thatd . () equals d for every d. The case of a
dictionary d and a symbol atom i is discussed below in the section Dictionaries and
Symbolic Indexing. Other than that case, the remainder of this section assumes that
both d and i are non-empty lists.

The case where i is a non-negative integer vector

If the right argument is a nonnegative integer vector then d . i is a single item at
depth #i in d, and i is called the path to that item-at-depth. The first item i[0]
selects an item of d, then i[1] selects an item of that item, then i[2] selects an
item of that one, and so on. For example:

 d:((1 2 3
 4 5 6 7)
 (8 9
 10
 11 12)
 (13 14
 15 16 17 18
 19 20))
 d . 1 select item 1
(8 9
 10
 11 12)

K Reference Manual 4: Verbs 89

 d . 1 2 select item 2 of item 1
11 12
 d . 1 2 0 select item 0 of item 2 of item 1
11

The selections at each level are individual applications of Index Item: first, item
d@i[0] is selected, then (d@i[0])@i[1], then ((d@i[0])@ i[1])@ i[2],
and so on. These expressions can be rephrased using Over Dyad applied to Index
Item; the first is d@/i[0], the second is d@/i[0 1], and the third is
d@/i[0 1 2]. In general, for a vector i of any count, d . i is identical to d@/i.
Continuing the above example:

 ((d @ 1) @ 2) @ 0 selection in terms of a series of @’s
11
 d @/ 1 2 0 selection in terms of @-Over
11

The case where the items of i are non-negative integer vectors
(cross-sectional index)

Index is cross-sectional when the items of i are lists. That is, items-at-depth in y are
indexed for paths made up of all combinations atoms ofi[0] and atoms ofi[1]
and atoms ofi[2], and so on to the last item of i. The simplest case of cross-
sectional index occurs when the items of i are vectors. For example,d .(2 0;0 1)
selects items 0 and 1 from both items 2 and 0:

 d . (2 0;0 1)
((13 14 item 0 of item 2
 15 16 17 18) item 1 of item 2
 (1 2 3 item 0 of item 0
 4 5 6 7)) item 1 of item 0

Note that items appear in the result in the same order as the indices appear in i.

The first item of i selects two items of d, as in d@i[0]. The second item of i
selects two items from each of the two items just selected, as in (d@i[0])@'i[1].
If there had been a third vector item in i, say of count 5, then that item would select
five items from each of the four items-at-depth 1 just selected, as in
((d@i[0])@'i[1])@''i[2], and so on. When the items of i are vectors the

90

result is rectangular to at least depth#i, depending on the regularity of d, and the
kth item of its shape vector is#i[k] for every k less than#i. That is, the first
#i items of the shape of the result are#:'i .

The case where the items of i are rectangular non-negative integer lists

More general cross-sectional indexing occurs when the items of i are rectangular
lists, not just vectors, but the situation is much like the simpler case of vector items.
In particular, the shape of the result is ,/^:'i.

The case where some of the items of i are nil

Nils in the right argument mean “select all”: ifi[0] is nil, then continue on with
d and the rest of i, i.e. 1 _ i; if i[1] is nil, then for every selection made
through i[0], continue on with that selection and the rest of i, i.e.2 _ i; and
so on. For example,d .(;0) means that the 0th item of every item of v is se-
lected:

 d . (;0)
(1 2 3 item 0 of item 0
 8 9 item 0 of item 1
 13 14) item 0 of item 2

Another example, this time withi[1] equal to nil:

 d . (0 2;;1 0)
((2 1 items 1 and 0 of item 0 of item 0
 5 4) items 1 and 0 of item 1 of item 0
 (14 13 items 1 and 0 of item 0 of item 2
 16 15 items 1 and 0 of item 1 of item 2
 20 19)) items 1 and 0 of item 2 of item 2

Note thatd .(;0) is the same asd .(0 1 2;0), but in the last example,
there is no value that can be substituted for nil in (0 2;;1 0) to get the same
result, because when item 0 of d is selected, nil acts like0 1, but when item 2 of
d is selected, it acts like0 1 2.

The general case of a nonnegative integer list i

In the general case, when the items of i are nonnegative integer atoms or lists, or
nil, the structure of the result can be thought of as cascading structures of the items
of i. That is, with nils aside, the result is structurally likei[0], except that wher-

K Reference Manual 4: Verbs 91

ever there is an atom in i[0], the result is structurally like i[1], except that
wherever there is an atom in i[1], the result is structurally like i[2], and so on.
The general case of Index can be defined recursively in terms of Index Item by
partitioning the list i into its first item and the rest:

 Index:{[d;F;R] :[_n ~ F; Index[d; *R; 1 _ R]
 0 = #R; d @ F
 @ F; Index[d @ F; *R; 1 _ R]
 Index[d;; R]�F]}

That is, d . i is Index[d;*i;1 _ i]. To work through the definition, start
with F as the first item of i and R as the remainder. At each step in the recursion, if
F is nil then select all of d and continue on, with the first item of the remainder R as
the new F and the remainder of R as the new remainder; otherwise, if the remainder
is the empty vector apply Index Item (the right argument F is now the last item of i),
and we are done; otherwise, if F is an atom, apply Index Item to select that item of
d and continue on in the same way as when F is nil; otherwise, apply Index with
fixed arguments d and R, but independently to the items of the list F.

Dictionaries and Symbolic Indexing

If i is a symbol atom then d must be a dictionary or handle of a directory on the K-
tree, andd . i selects the value of the entry named in i. For example, if:

 dir: .((`a;2 3 4);(`b; "abcdefg"))

then ̀ dir .`b is "abcdefg" and ̀ dir .(`b;1 3 5) is "bdf".

If i is a list whose items are nonnegative integer atoms and symbols atoms, then
just like the nonnegative integer vector case,d . i is a single item at depth #i
in d. The difference is that wherever a symbol appears in i, say as the kth item, the
selection up to the kth item must produce a dictionary or a handle of a directory.
Selection by the kth item is the value of an entry in that dictionary or directory, and
further selections go on from there. For example:

 (1;.((`a; 2 3 4);(`b; 10 20 30 40))) . (1; `b; 2)
30

As we have seen above for the general case, every atom in the kth item of i must be
a valid index of all items at depth k selected byd . k # i. Moreover, symbols
can only select from dictionaries and directories, and integers cannot. Consequently,

92

if the kth item of i contains a symbol atom, then all items selected byd . k # i
must be dictionaries or handles of directories, and therefore all atoms in the kth
item of i must be symbols.

It follows that each item of i must be made up entirely of nonnegative integer
atoms, or entirely of symbol atoms, and if the kth item of i is made up of symbols,
then all items at depth k in d selected by the first k items of i must by dictionaries.

Note that if d is either a dictionary or handle to a directory thend . ,!d is a list
of values of all the entries.

Facts About Index

In the general case of a one-item list i, d . i is identical tod @ *i.

When the index i is the empty list, i.e.(), the meaning is “Index All”. That is,
when i is the empty list thend . i is d. For example:

 1 2 3 . () 10 . ()
1 2 3 10

The last paragraph in the definition of Index Item applies equally to Index and
Amend.

Error Reports

Domain Error if the symbol d is not a handle, i.e. does not hold the name of an
existing global variable.

Index Error if any atom in i is not a valid index to the item-at-depth in d.

Type Error if any atom of i is not an integer, symbol or nil.

K Reference Manual 4: Verbs 93

Join
x , y

Arguments

Any atoms or lists.

Definition

Join connects the items of x with the items of y. The count ofx,y is (#x)+(#y).
If x is an atom then it is identical to the first item ofx,y , and if y is an atom it is
identical to the last item ofx,y . If x is a list thenx[i] is identical to (x,y)[i],
and if y is a list theny[i] is identical to (x,y)[(# x)+i]. For example:

 1 , 4 5 6 7 1 2 3 , 4
1 4 5 6 7 1 2 3 4

 1 2 3 , 4 5 6 7
1 2 3 4 5 6 7

 1 2 3 , (8 1 6;3 5 7;4 9 2)
(1 item 0 of the join
 2 item 1
 3 item 2
 8 1 6 item 3
 3 5 7 item 4
 4 9 2) item 5

 ("canoe";`dinghy),("kayak";66545;{x + y})
("canoe" item 0 of the join
 `dinghy item 1
 "kayak" item 2
 66545 item 3
 {x + y}) item 4

94

Less
x < y

Arguments

The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols. The result is the integer
atom 0 or 1, or an integer list consisting of 0’s and 1’s.

Definition

Less is an atom function. For atoms x and y, the value of x < y is:

• 1 if x and y are numeric, and x is less than y in the usual mathematical
sense, and 0 otherwise;

• 1 if x and y are characters, and the ASCII value of x is less than the ASCII
value of y, and 0 otherwise (see the system function _ic for ASCII values);

• 1 if x and y are symbols, and x comes before y in lexicographic order, and 0
otherwise.

For example:

 1 < -1 0 1 2
0 0 0 1
 "a" < "z"
1
 "aA" < "Z"
0 1
 `inch `mile < `foot `yard
0 1

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. That is, x < y is 0 if x and y are close in value, even if x is actually
less than y.

 1 < 1.000000000001 0.999999999999 < 1
1 1
 1 < 1.0000000000001 0.9999999999999 < 1
0 0

K Reference Manual 4: Verbs 95

Note that 0I (integer infinity) is greater than all other integers, 0N is less than all
other integers, and -0I is less than all integers except 0N. Similar relations hold
for the floating-point values 0i, -0i, and 0n.

Error Reports

Length Error if the arguments are not conformable.

Type Error if atoms x and y are not both numeric, or not both character, or not both
symbols.

96

Make / Unmake Dictionary
. x

Description

Create a dictionary from a list x of a special form, or create a list of that form from
a dictionary x.

Argument

The argument x is either a dictionary or list satisfying the following conditions:

(i) each item is a list with two or three items;

(ii) the first item of each item is a symbol that is a valid dictionary entry; and

(iii) if an item has three items then the third one is a dictionary.

Definition

If x is a list as described above then. x is a dictionary whose entries are the first
items of the items of x, i.e. *:'x . That is, the dictionary entry created from the
ith item x[i] is x[i;0]. Also, the value of the dictionary entry created from
x[i] is x[i;1], and if x[i] has three items thenx[i;2] is the attribute
dictionary of that entry. For example, the following expression creates a dictionary
with 2 entries ̀a and ̀ b, and the display class of `b is ̀ button :

 c: .((`a;1 2 3);(`b;"2+3";.,(`c;`button)))
 c.a
1 2 3
 c.b
"2+3"
 c.b..c
`button

If x is a dictionary then . x is a list of this special form, and x is identical to
.(. x).

Error Reports

Rank Error if the argument x does not have the appropriate shape as specified in (i)
above.

Type Error if any item of the items of x is not as specified in (ii) and (iii) above.

K Reference Manual 4: Verbs 97

Match
x ~ y

Arguments

Any atoms or lists x and y.

Definition

The result is the integer atom 1 if x is identical to y, and otherwise it is the integer
atom 0. Comparison tolerance is used when comparing numeric values when at
least one is floating-point; see Equal for an example of its effect. Empty lists do not
necessarily match other empty lists; they must be of the same type.

 2 3 ~ 2 3 () ~ !0 "a" ~ ,"a"
1 0 0

98

Max / Or
x | y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Max / Or is an atom function. For atoms x and y the result is the mathematically
greater of the two. For example:

 3 | 8 123.45 | 987.65
8 987.7
 3 | -8 123.45 | -987.65
3 123.4

If both arguments are integers, the result is integer, and if at least one is floating-
point, the result is floating-point.

When the arguments consist of the integer atoms 0 or 1, the result is the logical-Or
function:

 0 0 1 1 | 0 1 0 1
0 1 1 1

Error Reports

Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: Verbs 99

Min / And
x & y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Min / And is an atom function. For atoms x and y the result is the mathematically
lesser of the two. For example:

 3 & 8 123.45 & 987.65
3 123.45
 3 & -8 123.45 & -987.65
-8 -987.65

If both arguments are integers, the result is integer, and if at least one is floating-
point, the result is floating-point.

When the arguments consist of the integer atoms 0 or 1, the result is the logical-
And function:

 0 0 1 1 | 0 1 0 1
0 0 0 1

Error Reports

Length Error if the arguments are not conformable.

Type Error if either argument is not numeric.

100

Minus
x - y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Minus is an atom function. For atoms x and y the result is the mathematical differ-
ence of the two.

If both arguments are integers, the difference is integer, and is computed using
integer arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the difference, which is also floating-point, is computed using float-
ing-point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number.

Error Reports

Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: Verbs 101

More
x > y

Arguments

The arguments x and y are conformable atoms or lists. When both are atoms they
must both be numeric, or both characters, or both symbols.

Definition

More is an atom function. For atoms x and y, the value ofx > y is:

• 1 if x and y are numeric, and x is greater than y in the usual mathematical
sense, and 0 otherwise;

• 1 if x and y are characters, and the ASCII value of x is greater than the
ASCII value of y, and 0 otherwise (see the system function _ic for ASCII
values);

• 1 if x and y are symbols, and x comes after y in lexicographic order, and 0
otherwise.

For example:

 1 > -1 0 1 2
1 1 0 0
 "a" > "z"
0
 "aA" > "Z"
1 0
 `inch `mile > `foot `yard
1 0

Comparison tolerance is used when both x and y are numeric and at least one is
floating-point. That is,x > y is 0 if x and y are close in value, even if x is actu-
ally greater than y.

 1.000000000001 > 1 1 > 0.999999999999
1 1
 1.0000000000001 > 1 1 > 0.9999999999999
0 0

102

Note that 0I (integer infinity) is more than all other integers, 0N is less than all
other integers, and -0I is less than all integers except 0N. Similar relations hold
for the floating-point values 0i, -0i, and 0n.

Error Reports

Length Error if the arguments are not conformable.

Type Error if atoms x and y are not both numeric, or not both character, or not both
symbols.

K Reference Manual 4: Verbs 103

Negate
- x

Argument

x is any numeric atom or list.

Definition

Negate is the atom function defined by0 - x . The type of the result (integer or
floating-point) for an atom argument x is the same type as x.

Error Reports

Type Error if the argument x is not numeric.

104

Not / Attribute
~ x

Argument

The argument x is a numeric atom, symbolic atom, or a list whose atoms are all
numeric or all symbols.

Definition

Not / Attribute is an atom function. If x is numeric, then ~x is 0=x. For example:

 ~ 1 0 logical negation
0 1
 ~ 4.6 0 -4.6 general case
0 1 0

If x is a symbol atom, say `a, then ~x is ̀ a. . Consequently, if the symbol x is a
handle holding the name of a global variable, then~x is the handle of the at-
tribute directory of that variable. For example, if x is a handle then the dependency
definition on this handle is (~x).`d , and the dependency definitions for all en-
tries in x are x[~!d;`d].

Also, the compound handle `a.b.c can be produced from the simple handles
`a, ̀ b, and ̀ c as follows:

 {`$($ ~ x) , $ y}/`a `b `c

(see Format, Format (Dyadic) and Over).

Error Reports

Type Error if an atom in x is not a symbol or numeric.

K Reference Manual 4: Verbs 105

Plus
x + y

Arguments

The arguments are conformable numeric atoms or lists. The result is numeric; if
both arguments are integer atoms or list, the result is integer.

Definition

Plus is an atom function. For atoms x and y the result is the mathematical sum of
the two.

If both arguments are integers, the sum is integer, and is computed using integer
arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the sum, which is also floating-point, is computed using floating-
point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number.

Error Reports

Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

106

Power
x ^ y

Arguments

The arguments are conformable numeric atoms or lists.

Definition

Power is an atom function. Integer arguments are converted to floating-point be-
fore the function is applied. The definition for atoms x and y is as follows:

• If x is positive thenx^y is identical toexp[y*log[x]]. (A special
case is a positive whole number y, wherex^y is the product of x with
itself y times);

• If x equals 0 thenx^y is 0.0 for all nonzero y;

• If y is 0 thenx^y is 1.0 for all x;

• If x is negative and y is a whole number thenx^y is -(-x)^y if y is odd
and (-x)^y if even.

For example:

 2^3 -2.0^2
8.0 4.0
 -2^3 2.0^0.5
-8.0 1.414
 0^0 10^1000
1.0 0i

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. Also, the result is 0i (infinity) if the math-
ematical result would be too large to be represented, and similarly for -0i .

Error Reports

Domain Error if the left argument is negative and the right argument is not a whole
number.

Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

K Reference Manual 4: Verbs 107

Range
? x

Argument

Any list.

Definition

The result is a list of the unique items of x, in the order of their first occurrence
(i.e., the occurrence with the smallest index). For example:

 ? 9 6 8 6 9 7 8 9 6 ? "strange"
9 6 8 7 "strange"

 ? "raccoon"
"racon"

 ? (9 2 3;4 5;9 2 3;6 7 8;4 5;9 2 3)
(9 2 3
 4 5
 6 7 8)

See the primitive function Group for the relationship between it and this primitive.

Range is an identity function for empty lists.

Error Reports

Rank Error if x is an atom.

108

Reciprocal
% x

Arguments

The argument x is a numeric atom or list.

Definition

Reciprocal is an atom function defined by1%x . The result is always floating-
point, even when x is 1. When x is 0 or -0, the result is 0i, i.e. floating-point
infinity. Similarly, the reciprocal of infinity (and minus infinity) is 0.0.

 %2 %1 %0
0.5 1.0 0i

Error Reports

Type Error if x is not numeric.

K Reference Manual 4: Verbs 109

Reverse
| x

Arguments

Any atom or list.

Definition

This function reverses the order of the items in its argument. For example:

 | 3 1 4 2
2 4 1 3
 m : (8 1 6 ; 3 5 7 ; 4 9 2)
 m | m
(8 1 6 (4 9 2
 3 5 7 3 5 7
 4 9 2) 8 1 6)

Also, since the primitive function First produces the first item in a list x, the K
idiom First-Reverse, denoted*|x , produces the last item.

 *| `one `two `three
`three

Reverse is an identity function for all atoms, empty lists, and one-item lists.

 | "a" | !0 | ,3 1 4 2
"a" !0 ,3 1 4 2

110

Rotate / Mod
x ! y

Description

Rotate the list y by x positions, or compute the remainder of the atom y divided by
x.

Arguments

Rotate: The left argument is an integer atom and the right argument is any list;

Mod: the left argument is a numeric atom or list and the right argument is a nu-
meric atom.

Definition

If the right argument is a numeric atom thenx!y is Mod and the result is the
remainder of x divided by y, i.e. x - y * _ x % y . f both arguments are
integer, so is the result. Otherwise, the result is floating-point. For example:

 5 ! 3 5 ! -3
2 -1

 1.8 -2.7 ! 0.2 -3 4 -17 ! -4
0 0.1 -3 0 -1

If the right argument is a list thenx!y is Rotate, and the result is a list with the
same items as y, but rotated x!#y positions (and hence the connection between
Mod and Rotate). The rotation is towards the front if x is positive and the back if x
is negative (that is, towards index position 0 if x is positive and index position
-1+#y if x is negative).

Specifically, if x is positive and less than #y then itemy[x] becomes item 0 of
the result, itemy[x+1] becomes item 1, and so on; itemy[x-1] becomes the
last item of the result, itemy[x-2] the next-to-last, and so on. If x is greater than
or equal to #y the remainderx!#y is used for x. For example:

 5 ! "abcdefgh" 21 ! "abcdefgh"
"fghabcde" "fghabcde"

K Reference Manual 4: Verbs 111

If x is negative the rotation is in the other direction, i.e. if the positive value -x is
less than#y then itemy[0] becomes item -x of the result, and so on. As above,
if -x is greater than or equal to #y the remainderx!#y is used for x. For ex-
ample:

 -5 ! "abcdefgh" -21 ! "abcdefgh"
"defghabc" "defghabc"

Both Mod and Rotate are atom functions of the left argument, i.e. ![;y] is an
atom function for every y. In either case the result is structurally like the left argu-
ment x, except that in the case of Mod, every atom in x is replaced by the remainder
of that atom divided by y, while for Rotate, every atom in x is replaced by the list y,
rotated according to that atom.

Error Reports

Int Error if the left argument is not integer.

Type Error if an atom right argument is not numeric.

112

Shape
^ x

Arguments

Any atom or list.

Definition

Associated with every data object is an integer vector called the shape of the ob-
ject. An atom has an empty shape:

 ^ 3.14
!0

A list x has a non-empty shape whose first item is the count of the list, while subse-
quent items are counts of the items-at-depth for successive depth levels in x, and
are present only if the list is sufficiently regular to those depths. For example, con-
sider the following list r:

 r:(("ab";"cd";"ef")
 ("gh";"ij";"kl")
 ("mn";"op";"qr")
 ("st";"uv";"wx"))

This is a list of four items, each of which is a list of three items, and each of these
has items that are character vectors of count 2. This list is said to be rectangular
because it is rectangular at every level, which in this case means that all items are
lists of the same count, and all items of items are lists of the same count. The shape
of a rectangular list gives the counts of the items at consecutive levels, in depth
order:

 ^ r
4 3 2

Each level in this example is rectangular. A list that isn’t rectangular at every level
may be rectangular for the first n levels, but irregular below that, in which case it is
said to rectangular to level n (see the topic Rectangular List in the chapter Termi-
nology). For example:

K Reference Manual 4: Verbs 113

 s:(("aby";"cd";"ef")
 ("gh";"i";"kl1")
 ("mn";"opz";"qr")
 ("st";"uv";"w"))

is rectangular to level 2, since every item is a list of count 3, but the items of items
vary. The shape of this list has only two items, even though it has three levels:

 ^ s
4 3

In the next example every item at level 2 has count 2, but the items of the list,
which are the lists at level 1, do not all have the same count. The shape of this list
has only one item, the count of the list, because it is not rectangular at level 2. Even
though the items at level 2 are all lists of the same count, the list cannot be rectan-
gular at that level because of gaps introduced at level 1.

 t:(("ab";"cd";"ef")
 ("gh";"ij")
 ("kl";"mn";"op";"qr")
 ("st";"uv";"wx"))
 ^ t
,4

The shape of a list always has at least one item, the count of the list. The only item
of the result of shape that can be zero is the last.

114

Take / Reshape
x # y

Arguments

The left argument for Take is either an integer atom or an integer vector. The right
argument is any atom or list.

Definition

If the left argument x is a nonnegative integer atom then the result ofx#y is a list
whose count equals x and which consists of the first x items of y. If x is a negative
integer atom the result is a list whose count equals -x and which consists of the last
-x items of y.

 3 # 4 5 6 7 8 9 -3 # 4 5 6 7 8 9
4 5 6 7 8 9

If x is greater than#y or less than -#y then the items of y are used repeatedly to
fill out the result; if x is positive the items are of y are selected cyclically from first
to last and are placed in the result first to last, while if x is negative the items of y
are selected cyclically from last to first and are placed in the result from last to first.
For example:

 8 # 4 5 6 7 8 9 -13 # 4 5 6 7 8 9
4 5 6 7 8 9 4 5 9 4 5 6 7 8 9 4 5 6 7 8 9

Note that for positive x, the shape of the result is x,1_^y.

The second case of Take is an integer vector x, and extends the first case. With one
exception x must be nonnegative, and that case is discussed below. For now as-
sume that x is positive, in which case x#y is just like the case for positive integer
x, except the selected items are arranged in a rectangle of dimensions x. For ex-
ample:

 r:(("ab";"cd";"ef")
 ("gh";"ij";"kl")
 ("mn";"op";"qr")
 ("st";"uv";"wx"))
 r ~ 4 3 2 # "abcdefghijklmnopqrstuvwxyz"
1

Once again, the shape of the result is x,1_^y.

K Reference Manual 4: Verbs 115

If the vector x contains 0’s then the shape of the result the vector consisting of the
leading items of x, up to and including the first 0, that is,x[!1+x?0]. For ex-
ample:

 ^ 2 3 4 0 7 8 # "abc"
2 3 4 0

If the vector x contains negative integers, there must be only one and its value must
be -1. For example,2 -1 3 is a valid left argument but 2 -2 3 and -1 2 3 -1
are not. The following examples illustrate the general case:

 2 -1 # "abcd" 2 -1 # "abcdefgh"
("ab" ("abcd"
 "cd") "efgh")

The shapes of the results:

 ^ 2 -1 # "abcd" ^ 2 -1 # "abcdefgh"
2 2 2 4

These examples illustrate the general case for the left argument2 -1; y can be
any list with an even number of items, and the result is a list of shape equal to
2,(#y)%2 . The -1 in the left argument stands for (#y)%2 . A second example:

 2 -1 3 # "abcdef" 2 -1 3 # "abcdefghijkl"
(,"abc" (("abc"
 ,"def") "def")

 ("ghi"
 "jkl"))

The shapes of the results:

 ^ 2 -1 3 # "abcdef" ^ 2 -1 3 # "abcdefghijkl"
2 1 3 2 2 3

Once again these examples illustrate the general case for the left argument 2 -1 3;
y can be any list for which #y is a multiple of 6, and the result has shape equal to
2,((# y)%6),3. The -1 in the left argument stands for (#y)%6.

116

The general idea is that the item of the result shape corresponding to -1 is not
specified by x, but is computed to be #y divided by the product of all other items of
x except -1. If -1 is included in the product it simply negates what it would be
otherwise, and therefore the result shape is (#y)%-*/x.

Facts About Take

If the right argument is the empty list then the left argument must be the atom 0 or
a vector containing one or more zeros.

Error Reports

Domain Error if the left argument is an integer vector and contains more than one
negative integer, or exactly one that is not -1.

Int Error if the left argument is not integer.

Length Error if the vector left argument contains one occurrence of -1 but #y is not
equal to an integer multiple of -*/x.

K Reference Manual 4: Verbs 117

Times
x * y

Arguments

The arguments are conformable numeric atoms or lists. The result is numeric, and
if both arguments are integer atoms or list, the result is integer.

Definition

Times is an atom function. For atoms x and y the result is x multiplied by y.

If both arguments are integers, the product is integer, and is computed using integer
arithmetic.

If one of the arguments is floating-point, the other is made floating-point (if it is not
already), and the product, which is also floating-point, is computed using floating-
point arithmetic.

The result is 0.0 if the mathematical result would be too small in magnitude to be
represented as a floating-point number. Similarly, the result is 0i or -0i when the
result is too large in magnitude.

Error Reports

Length Error if arguments are not conformable.

Type Error if either argument is not numeric.

118

Value / Execute
. x
d @ s

Description

Evaluate the contents of x, and if d is present, in the directory named in d.

Arguments

The argument x is either a character vector, enlisted character vector or a symbol
atom. The argument d is a symbol atom.

Definition

If in the monadic case x is a character vector then its contents must be a valid
expression or command, and the effect of Value is to evaluate that expression or
execute that command. The result of. x is the result of the expression, except
when the last thing executed in the expression is Assign, Amend or Item Amend
(see the chapter Amend, Index, Apply and Assign), in which case the result is nil
(these exceptions are exactly the same as when the result of an expression entered
in an interactive session is not displayed). The result is also nil when the contents
of x are a valid command because commands do not have explicit results. For
example:

 . "2+3*4"
14
 . "r: 2+3*4"

Nothing displayed; the result is nil.

Again in the monadic case, if x is a symbol atom that holds the name of a global
variable, the esult of. x is the value of that variable. For example:

 f: {x ^ 2}
 . `f
{x ^ 2}

In the dyadic case d@x the left argument must be a symbol holding the name of a
directory on the K-tree, in which case the execution or evaluation of x takes place
in that directory. This means that any relative names in x are resolved with that
directory as the reference point. Names with a single leading dot are absolute refer-
ences and always refer to the same object.

K Reference Manual 4: Verbs 119

If d is not present the execution or evaluation of x takes place in the current direc-
tory.

Execution of a character vector x proceeds just as if its contents were typed in an
interactive session and Return was pressed, assuming that in the dyadic case that
the Directory command was first executed to change to the current directory to the
one named in d. In particular, if x is a character vector holding a function expres-
sion, as in "{x + a}", the effect of Execute is to bind any relative references to
global variables – a in this example – to the directory named in d, or in the absence
of d, the current directory.

Note that when both d and x are symbol atoms, d @ x and d . x coincide with
cases of Index Item and Index.

The monadic case. s is identical to_d @ s.

Error Reports

Domain Error if the argument x is not a character vector, enlisted character vector,
or symbol atom, or if the symbol d is not a handle, i.e. does not hold a valid direc-
tory name.

120

Where
& x

Arguments

The argument x is any nonnegative integer atom or vector.

Definition

The result is a nonnegative integer vector containing indices of x, i.e. integers from
! # x, where each index i appears x[i] times. In particular, for a boolean list x,
the result is a vector of the indices of x where 1’s appear. For example:

 & 0 0 1 0 1 0 0 1
2 4 7 the indices of 1’s in the argument
 & 3 0 4
0 0 0 2 2 2 2 three 0’s, no 1’s, and four 2’s

An atom is treated like a one-item list, and always returns that many 0’s, as in:

 &3
0 0 0

Error Reports

Domain Error if the argument is an integer atom or vector, but contains negative
integers.

Int Error if the argument is not an integer atom or vector.

K Reference Manual 121

CHAPTER 5

ADVERBS

Adverbs (sometimes called operators) modify nouns and verbs to create new verbs.
For example, Plus is a dyad that produces the sum of its two arguments, while Plus-
Over, denoted by+/ , is a monad that produces the sum of all items of its argu-
ment. There are six adverbs:

• Each, denoted by ', which applies the function it modifies to the items of its
arguments, rather than the arguments themselves;

• Each Pair (':),

• Each Right (/:), and

• Each Left (\:), which are variants of Each;

• Over (/) and its counterpart,

• Scan (\).

The object modified by an adverb is called its operand. Syntactically, an adverb
symbol must be immediately adjacent to its operand. For example, +/ is Plus-
Over, but + / is not.

Just as verbs are resolved to functions for execution, the verbs created by adverbs
are resolved to derived functions.

There are essentially two sources of errors when using adverbs: the adverbs them-
selves and the functions to which they are applied. For example, in applying the
Each adverb to a dyad f, as in the expression x f' y , the expression will fail if x
and y are not conformable, which is an Each error, or if the function f fails for
some pair x[i] and y[i] . The errors listed in any Error Reports subsection in
this chapter are those for which the adverbs are the direct cause.

122

Each
f' x
x f' y
f'[x;y;z...]

Description

Apply the function f to the items of the argument(s).

Arguments

In the first case, the operand f is a monad and x is an atom or list. In the second
case, f is a dyad and x and y can be either atoms or lists, but if both are lists they
must have the same count. The last case extends the second case: f can have any
valence of at least one, the number of objects between brackets equals the valence
of f, and each argument can be an atom or list, but if two or more are lists then all
lists must conform.

Definition

In the first case, Each applies a monad f to each item of x:

 q: !:' 6 4 5 Enumerate-Each
 q
(0 1 2 3 4 5 Enumerate 6
 0 1 2 3 Enumerate 4
 0 1 2 3 4) Enumerate 5
 #:' q Count-Each
6 4 5
 |:' q Reverse-Each
(5 4 3 2 1 0
 3 2 1 0
 4 3 2 1 0)
 +/' q Sum-Each
15 6 10

Note that whenever Each is applied to the monad of a primitive verb, as in !:' for
Enumerate-Each, the monadic case must be made explicit by modifying the verb
with colon. The dyadic case is assumed if no modifier is present. For example,
Take-Each, an example of the dyadic casex f'y :

K Reference Manual 5: Adverbs 123

 4 -7 9 #' !:' 6 4 5
(0 1 2 3
 1 2 3 0 1 2 3
 0 1 2 3 4 0 1 2 3)

In the dyadic case x f'y , the arguments x and y must conform. For example,
Join-Each of two atoms is the same as Join:

 "a" ,' "b" ("a" ,' "b") ~ "a" , "b"
"ab" 1

Join-Each of an atom and a list joins the atom to each item of the list:

 "a" ,' "bcd" "abc" ,' "d"
 ("ab" ("ad"
 "ac" "bd"
 "ad") "cd")

Join-Each of two lists joins items of one to items of the other:

 "abc" ,' "def"
 ("ad"
 "be"
 "cf")

The general case is a straightforward extension of the dyadic case. If there are only
two arguments x and y then f'[x;y] is identical to x f'y . Otherwise, if all
arguments are atoms, f'[x;y;z;�] is identical to f[x;y;z;�] . In general,
when there are lists among the arguments they must all conform. The ith item of
the result is

 f[xi; yi; zi; �]

where xi denotesx[i] if x is a list and x itself if x is an atom, and similarly
for yi, zi, etc. As in the other cases, if the list arguments are the empty list then
so is the result.

If x is an atom thenf'x is f x .

The valence of f' equals the valence of f .

If at least one argument of f' is the empty list then so is the result, and the function
f is never applied.

124

Error Reports

Length Error if, in the case of dyadic f, the arguments x and y do not conform, or in
the general case, two or more arguments are nonconforming lists.

K Reference Manual 5: Adverbs 125

Each Left
x f\: y

Description

Apply dyad f to each item of x with all of y.

Arguments

The operxand f is a dyadic function, and the arguments x and y can be any atom or
list.

Definition

If x is an atom then x f\:y is f[x;y].

If x is a list then x f\:y is a list with the same count as x and the ith item of the
result is f[x[i];y] for every i.

For example, Join-Each-Left joins every item of the left argument to the right argu-
ment:

 2 3 4 ,\: 5 6 7
(2 5 6 7
 3 5 6 7
 4 5 6 7)

(Compare with the example 2 3 4,/:5 6 7 in the section on Each Right).

A commonly used K idiom is “In-Each-Left”, that is, _in\: . By itself, the system
function _in searches for its left argument among the items of its right argument.
However, often one wants to search for every item of the left argument among the
items of the right, and that functionality is provided by _in\: . For example:

 4 _in 1 7 2 4 6 3
1 4 is an item of the right argument
 4 3 _in 1 7 2 4 6 3
0 vector 4 3 is not an item of the right
 4 3 _in\: 1 7 2 4 6 3
1 1 both 4 and 3 are items of the right

See the system function _lin and the companion idiom ?/: in the section on
Each Right.

126

If x is the empty list then so is the result, and the function f is never applied.

x f\:y is identical to x f'y for atoms y .

x f\:y is identical to f[;y]'x for all x and y (see Projection; Fixing Function
Arguments in the chapter Functions).

K Reference Manual 5: Adverbs 127

Each Pair
f': y
x f': y

Description

Apply dyad f to pairs of consecutive items.

Arguments

The operand f is a dyadic function, and the arguments x and y can be any atom or
any non-empty list.

Definition

Each Pair applies its argument function f to successive pairs of consecutive items
in the list argument y. If y is a list of count at least two, then f':x is a list with
count (#x)-1 and the ith item of the result is f[x[i+1];x[i]]. For example:

 -': 1 4 9 14 25 36
3 5 5 11 11

Find sentence endings in text, say all periods followed immediately by blanks:

 a: "This seeks sentence endings. There are two. "
 & {(x=" ")&y = "."}': a
27 42
 a[27 42] check that they are indeed periods
".."

The result is always the empty list when the argument x is a list of count 1, and the
function f is never applied.

The dyadic case x f':y is defined in terms of the monadic as (,x),f':y,
and in addition is defined for the case when y is the empty list.

f':x is f[x;x] for atoms x.

Error Reports

Length Error in the monadic case if the argument is the empty list.

128

Each Right
x f/: y

Description

Apply dyad f to all of x with each item of y.

Arguments

The operand f is a dyadic function, and the arguments x and y can be any atom or
list.

Definition

If y is an atom then x f/:y is f[x;y], and if y is a list then x f/:y is a list
with the same count and the ith item of the result is f[x;y[i]] for every i. If y
is the empty list then so is the result.

For example, Join-Each-Right joins every item of the right argument to the left
argument:

 2 3 4 ,/: 5 6 7
(2 3 4 5
 2 3 4 6
 2 3 4 7)

(Compare with the example 2 3 4,\:5 6 7 in the section on Each Left).

A commonly used K idiom is “Find-Each-Right”, that is, ?/:. By itself, Find
searches for its right argument among the items of its left argument. However,
often one wants to search for every item of the right argument among the items of
the left, and that functionality is provided by ?/:. For example:

 1 7 2 4 6 10 3 ? 4
3 index of 4 in left argument
 1 7 2 4 6 10 3 ? 4 3
7 4 3 is not an item of left argument
 1 7 2 4 6 10 3 ?/: 4 3
3 6 indices of 4 and 3 in left argument

See the companion idiom _in\: in the section on Each Left.

If y is the empty list then so is the result, and the function f is never applied.

K Reference Manual 5: Adverbs 129

x f/:y is identical to x f'y for atoms x.

x f/:y is identical to f[x;]'y for all x and y (see Projection; Fixing Function
Arguments in the chapter Functions).

130

Over Dyad
f/ y
x f/ y

Description

In the f/ y case: (�((y[0] f y[1]) f y[2]) f �) f (*|y)

In the x f/ y case: (�(x f y[0]) f y[1]) f �) f (*|y)

Arguments

The operand f is a dyad, and the arguments x and y are any atoms or lists.

Definition

Consider the second case,x f/ y . The left argument x must be a valid left argu-
ment of f and every item of the right argument must be a valid right argument,
unless it is an atom, and then the atom must be a valid right argument.

If y is a non-empty list the evaluation proceeds as follows:

 x: f[x; y[0]]
 x: f[x; y[1]]
 .
 .
 .
 x: f[x; *|y] *|y is the last item of y

That is, f is applied iteratively to the left argument with the items of y as succes-
sive right arguments. The result of x f/ y is the last value of x in the above
sequence. For example, all items of a list can be added to an initial value as fol-
lows:

 10 +/ 1 2 3
16

The first case, f/ y , is similar. If y is a list with at least one item the evaluation
proceeds as follows:

K Reference Manual 5: Adverbs 131

 x: y[0]
 x: f[x; y[1]]
 x: f[x; y[2]]
 .
 .
 .
 x: f[x; *|y] *|y is the last item of y

For example:

 +/1 2 3 +/1 +/,1
6 1 1

Over Dyad is used in two important K-idioms,|/ and &/ , generally known as
Maximum and Minimum, respectively. When applied to a numeric vector,|/ pro-
duces the greatest value among the items of its argument, and&/ produces the
least value. For example:

 |/ 1 4 -6 9 1 3 &/ 1 4 -6 9 1 3
9 -6

In the special case where the argument x is a vector with boolean values 0 and 1,
|/x is 0 only if all items of x are 0, and&/x is 1 only if all items of x are 1.
Consequently|/ and &/ applied to boolean vectors are used to check for the
condition “if some condition is true” and “if all conditions are true”.

See Over Monad for finding the largest and smallest values in an arbitrary numeric
list.

Note that when Over is applied to a primitive verb there is no immediate context to
establish whether the verb denotes its monad or dyad. The general rule is applied,
which says that it is the dyad. For example, +/ is Plus-Over, not Flip-Over. As in
other situations, the monad must be explicitly specified by modifying the symbol
with a colon, as in +:/ .

Like the primitive verbs, the derived verbf/ for dyadic f has two cases, one
monadic and one dyadic, but unlike the primitive verbs, in situations where the
valence cannot be determined from context the monadic case is assumed. For ex-
ample, if f: + then f is strictly dyadic; ifg: +: then g is strictly monadic, but
if h: +/ then h is monadic. However, h is not strictly monadic; it can be evaluated

132

as a dyad, as in h[x;y], but when a choice must be made, it will be monadic. The
reason that ambivalence is allowed here is that the functionality of the monadic
and dyadic cases of Over is essentially the same.

If y is an atom then f/y is y and x f/y is f[x;y] .

If y is the empty list then so is x f/y and the function f is never applied.

If y is a one-item list thenf/y is *y .

If y is empty and f is either + , * , | , or & , then f/y is 0, 1, 0, or 1, respectively,
and the function f is never applied.

Note thatx f/y is identical to f/(,x),y .

Error Reports

Length Error inf/x if the argument x is the empty list and function f is not one of
+ , * , | , or & .

K Reference Manual 5: Adverbs 133

Over
 f/[x;y;z;�]

Description

Apply f iteratively to x and successive items of y, z,

Arguments

The operand f is a function with at least two arguments. The relationship of the
Over-f arguments to the arguments of f is like that of Each-f to f except for the
first argument x. That is, each argument other than the first can be an atom or list,
but if two or more of those are lists then all those lists must conform. The first
argument x is any valid first argument of f.

Definition

The general case of Over for functions with valence at least two is a direct exten-
sion of the dyadic case. The first argument x serves the same role as the left argu-
ment of the dyadic case, and all other arguments have the same role as the right
argument. That is, if all of y, z,... are atoms thenf/[x;y;z;�] is identical to
f[x;y;z;�] , and otherwisef/[x;y;z;�] is evaluated as follows:

 x: f[x;y0;z0;�]
 x: f[x;y1;z1;�]
 .
 .
 .
 x: f[x;yn;zn;�]

where y0 isy[0] if y is a list or y itself if y is an atom, and similarly for y1...yn,
z0...zn. The name yn stands for the last item of y if y is a list or y itself if y is an
atom, and similarly for zn, The result is the last value of x.

See the sections on Amend and Amend Item in the chapter Verbs for examples
where Over is used in the definitions of functions that describe the behavior of
these primitives.

For dyadic f,f/[a;b] is identical toa f/ b .

For functions f with valence at least three, the valence of f/ equals the valence of
f.

134

If all list arguments other than the first equal the empty list then the result is the
first argument, and f is never applied.

Error Reports

Length Error if any two list arguments among y, z,... do not conform.

K Reference Manual 5: Adverbs 135

Over Monad
 f/ x
 n f/ x
 b f/ x

Description

Apply f iteratively to x until, in the first case, a result matches either the previous
or the initial result, or in the second case, n times, or in the third case, the value of
b applied to the iterative result is 0.

Arguments

The operand f is any monad, and x is a valid argument of f. The argument n is a
positive integer while b is a monad.

Definition

The function f is applied iteratively to x, as in:

 x: f[x]
 .
 .
 .
 x: f[x]

The result is the last value of x or the next-to-last, depending on the case.

In the other cases of Over, the iteration results accumulate in the first argument,
while the other arguments determine by their count the number of iterations. Over
for a monad must provide other means for terminating the iterative process, which
are as follows:

• the evaluation off/ x ends when two successive iterative results match, or
the result of an iteration matches that of the first iteration. The primitive func-
tion Match is used in the test, and therefore comparison tolerance is used for
floating-point values. The result is the next-to-last value of x;

• the evaluation ofn f/ x ends after n iterations (this case is sometimes called
Do). The result is the last value of x;

136

• the evaluation ofb f/ x ends when the result ofb[x] matches 0 (this case
is sometimes called While). The result is the last value of x, that is, the first
value of x where b[x] matches 0. The primitive function Match is used in the
test, but comparisons to 0 are never approximate, even when comparison tol-
erance is used (see Comparison Tolerance in the chapter Terminology).

An interesting example of the first of these three cases is the common phrase ,// x .
This idiom applies to any list x and produces a list of depth 1 whose items are the
atoms in x. For example:

 ,// ("a";(1 2; `bc;("xyz"; 2.35)))
("a";1;2;`bc;"x";"y";"z";2.35)

The derived function ,// is (,/)/ . The comma in ,/ denotes the dyadic
primitive function Join, and therefore ,/ is an instance of Over Dyad. Conse-
quently ,/ denotes both a monad or dyad; which it is in ,// cannot be seen from
the immediate context (which is ,//) and therefore the monad case is assumed
(see Over Dyad). Consequently ,// x is Over applied to the monad {,/x} . This
monad joins all items of x into one list of depth one less than the depth of x unless
the depth of x is 0 or 1, in which case its result equals x. Over Monad has the effect
of applying this function repeatedly until there are no changes, that is, until the
depth of the result is 0 or 1. See Scan Monad for a trace of the intermediate results
of the iteration.

The expressions|/ and &/ were introduced in Over Dyad as Maximum and
Minimum for finding the greatest and least value in a numeric vector. To apply
these expressions to lists of greater depth, first use ,// to collect all items of a list
in a list of depth 1, and then apply |/ or &/ . That is, the general form of Maxi-
mum is |/,// and the general form of Minimum is&/,// . For example:

 |/,//(1;(2.3 25;(6 7 -9;10)))
 25.0
 &/,//(1;(2.3 25;(6 7 -9;10)))
 -9.0

Also see the examples in Scan Monad, particularly for Do and While. The last
paragraph in the definition of Over Dyad applies equally to Over Monad.

Error Reports

Int Error if the argument n for Do is not a nonnegative integer.

K Reference Manual 5: Adverbs 137

Scan Dyad
f\ y
x f\ y

Description

Trace the iteration in Over Dyad.

Arguments

The operand f is a dyad, and the arguments x and y are any atoms or lists.

Definition

Scan Dyad f evaluates like Over Dyad f in all cases; under the same conditions
where the iterative definition of Over-f applies, the result of Scan-f is a list whose
items are the intermediate results, in order, of that iterative process (the successive
values of x in the definition of Over Dyad f). In particular, the Over-f result is the
last item of the Scan-f result. For example:

 +\ 1 3 5 7
1 4 9 16

The last two paragraphs in the definition of Over Dyad apply equally to Scan Dyad.

If y is an atom then f\ y is y and x f\ y is f[x;y] .

If y is a 1-item list then f\ y is ,y .

If y is the empty list then so is f\ y , while x f\ y is ,x . This differs from Over
Dyad f, when the monad form f/ () is defined only for + , * , | , and & .

138

Scan
 f\[x;y;�]

Description

Trace the iteration in Over.

Arguments

The operand f is a function with at least two arguments. The relationship of the
Scan-f arguments to the arguments of f is like that of Each-f to f except for the first
argument x. That is, the number of objects between brackets equals the valence of
f, and the arguments other than the first must all conform. The first argument x is
any valid first argument of f.

Definition

Scan is to Over as Scan Dyad is to Over Dyad.

For dyad f, f\[a;b] is identical toa f\ b .

For functions f with valence at least three, the valence of f\ equals the valence of
f.

If all list arguments other than the first match the empty list the result is ,x .

Error Reports

Length Error if any two arguments among y, z,... do not conform.

K Reference Manual 5: Adverbs 139

Scan Monad
 f\ x
 n f\ x
 b f\ x

Description

Trace the iteration in Over Monad.

Arguments

The operand f is any monad, and x is a valid argument of f. The argument n is a
positive integer while b is a monad.

Definition

Scan Monad is to Over Monad as Scan Dyad is to Over Dyad.

The following examples could have been given in the section on Over Monad. The
advantage of giving them here is that Scan reveals all intermediate results, making
it easier to understand the iterative process. An important use of Scan is helping to
set up the right function for Over.

 f:{:[x ! 2; x; _ x % 2]}
 f\ 5
,5
 f\ 12
12 6 3
 f\ 640640
640640 320320 160160 80080 40040 20020 10010 5005

The second and third cases provide ways for the user to specify conditions under
which the iteration process is terminated. A nonnegative integer left argument speci-
fies the actual number of iterations. This form is sometimes called Do with Trace:

 f\ 640640
640640 320320 160160 80080 40040 20020 10010 5005
 4 f\640640
640640 320320 160160 80080 40040

The first item is the initial value of the argument x, and the first four iterates follow.

140

If the left argument is a monad the iteration proceeds until the result of that func-
tion applied to an intermediate result matches 0. This form is sometimes called
While with Trace:

 b:{x > 100000}
 b f\ 640640
640640 320320 160160 80080

Recall the expression ,//x discussed in the section on Over Monad, which ap-
plies to any list and produces a list of depth 1 whose items are all the atoms in x. It
may help to see how this function produces its results by evaluating the corre-
sponding Scan expression ,/\x and examining the intermediate results. The dis-
play of the result below has been edited to make comparisons of the intermediate
results easier.

 ,/\("a";(1 2; `bc;("xyz"; 2.35)))
(("a";(1 2;`bc;("xyz";2.35))) Argument
 ("a";1 2;`bc;("xyz";2.35)) 1st iteration
 ("a";1;2;`bc;"xyz";2.35) 2nd iteration
 ("a";1;2;`bc;"x";"y";"z";2.35)) 3rd iteration

Finally, the last paragraph in the definition of Over Monad applies equally to Scan
Monad.

Error Reports

Int Error if the argument n for Do with Trace is not a nonnegative integer.

K Reference Manual 141

CHAPTER 6

AMEND, INDEX, APPLY & ASSIGN

All the constructs in this chapter, which are in terms of brackets and semicolons,
have equivalent forms in terms of . and sometimes @ , and the latter are sometimes
more widely applicable. For example, the semicolons and brackets in the present
constructs are syntax, so that the number of objects appearing between brackets is
fixed at each occurrence. As a consequence, the Index expression x[a;b;c] will
always access items of x three levels down, no matter how often it is evaluated. On
the other hand, x . p will access items at level #p , which may vary from one
evaluation to the next. However, the use of semicolons and brackets is convenient,
and often easier to read than the other forms. For example, most function applica-
tions involve an unchanging function expression, and therefore a fixed number of
arguments, so that the bracket form of Apply (e.g. f[a;b;c]) is appropriate.
Bracket-semicolon constructs have the additional advantage of familiarity for most
readers, and because of that are used in the definitions of the other forms in the
preceding chapters.

You may notice in examples like m:"3CAK342" that the result is not displayed
in the session log. All constructs in this chapter using : are treated specially by K
for display purposes: whenever any such construct is the last one executed for an
input line in an interactive session, its result is not displayed.

142

Amend
v : y
v f: y
v f:
v :: y

Description

Modify the object whose name appears in place of v with the function f and the
atom or list y, whichever is present.

Arguments

The v on the left is a place holder for the name of a variable. If both f and y are
present then f is dyadic, the variable must currently have a value that is a valid left
argument of f, and y is any atom or list that is a valid right argument of f. If f is
present but y is not then f is monadic, and again the variable must currently have a
value that is a valid left argument of f. If f is not present then y is any atom or list.

Definition

In every use of Amend, the name of a variable appears in place of v. Say the name
is b. In all cases the effect is to change the value of b and the result is the new value
of b.

The first case associates the value of y with the name b, whether or not that name
previously had a value.

 m assume m has not been given a value
 m:"3CAK342" now give m a value
 m
"3CAK342"
 m:{x+y*z} give m another value
 m
{x+y*z}

Any name can be given any value, and subsequent values need not conform in any
way to previous values. This case of Amend is sometimes called Assign, but Amend
is used here for all three cases in reference to amending the K-tree.

The effect of the second case is to replace the value of b with f[b;y], and in the
third case with f[b]. The explicit result is also the new value. For example:

K Reference Manual 6: Amend, Index, Apply and Assign 143

 a: 1 2 3
 a +: 5
 a
6 7 8
 b: 3 2 # ! 6
 b
(0 1
 2 3
 4 5)
 r: b +: b becomes flip b, as does the result r of b +:
 b
(0 1 2
 3 4 5)
 r ~ b
1

The last case is syntactically a special form of the second case, but its meaning is
somewhat different. If b is a global variable and the expression b :: y appears in
a function expression, the effect to assign the contents of y to the global variable b
in the same directory as where the function is defined. (However, if the definition
also contains an ordinary assignment b: z then b will be local).

Error Reports

Various errors can occur when an improperly formed named appears in place of v,
as K attempts to parse the faulty expression.

144

Amend
v[j;k;�]: y
v[j;k;�] f: y
v[j;k;�] f:
v[]: y
v[] f: y
v[] f:

Description

In the first case replace the items-at-depth in the list whose name appears in place
of v at paths specified by the index list (j;k;�) with the corresponding items-at-
depth of y. In the next two cases modify those same items-at-depth with the func-
tion f and, if present, items-at-depth of y. In the last three cases replace or modify
the list whose name appears in place of v itemwise with f and, if present, the atom
or list y.

Arguments

The first argument v is a place holder for the name of an existing variable. The
value of that variable is like the first argument of the verb form of Amend, except
that a handle is not permitted. In the first three cases the list (j;k;�) is like the
second argument of the verb form. The items of (j;k;�) must satisfy the same
conditions as the verb form. The third argument f is any monadic or dyadic func-
tion; the second and fifth of the above expressions correspond to dyadic f and the
third and sixth to monadic f. The argument y, if present, is any atom or list that
conforms with the index list in the manner described under the verb form.

There must be at least one semicolon in the index list specification [j;k;�], or
no entries at all, or else this is Item Amend.

Definition

In every use of Amend, the name of an existing variable appears in place of v. The
value of that variable serves as the first argument d in the verb form of Amend. In
the first three cases the list (j;k;�) serves as the index list i in the verb form, and
in the last three cases the empty space between brackets represents the Enlist of nil,
and therefore these cases correspond to the verb form with the index list i equal
to ,_n. See Facts about Amend in the chapter Verbs for the behavior of Amend for
this i.

K Reference Manual 6: Amend, Index, Apply and Assign 145

In all cases the variable whose name appears in place of v is modified, and in that
sense these forms of Amend are like the verb form with a handle first argument
holding this name. However, the result of this form consists only of the new values
of the modified or replaced items-at-depth; it is neither the handle nor the entire
modified value of the verb form. For example:

 a:(1 2 3; 3 4 5)
 r: a[1 0;0 2] +: 100 r is the result of the Amend
 a
(101 2 103
 103 4 105)
 r
(103 105 r has the modified items-at-depth of a
 101 103)

The last paragraph in the definition of the verb Amend applies equally to this form.

Error Reports

Index Error if any path in the path list (j;k�) is not a valid path of the left argu-
ment.

Length Error if the path list (j;k;�) and the last argument y , if present, are not
conformable in the manner described under Amend in the Verbs chapter.

Length Error in the last three cases if v and y are lists with different counts.

Type Error if any atom of (j;k;�) is not an integer, symbol or nil.

146

Apply
f[j;k;�]
f[]

Description

Apply the function f to the argument list within brackets.

Arguments

f is a function and the objects within brackets are proper arguments of f.

Definition

 f[j;k] evaluates dyadic f;

 f[j;k;l] evaluates f with valence 3 (triadic), etc.

 f[] evaluates niladic f.

(See Apply Monad for f[j] .)

For functions of valence at least two, when any of the argument positions are left
blank, i.e. those arguments are unspecified, the effect is to project f onto the non-
blank, specified arguments. For example:

 f:{x+y+z}
 f[1; 2; 3]
6
 g: f[1;; 3] g is monadic, the projection of f onto

its first and third arguments
 g[2] apply g to the argument 2
6

When fewer argument positions than the valence of f appear between the brackets,
say n argument positions and valence m, the last m-n arguments are considered to
be unspecified and the function application is a projection onto the specified argu-
ments among these n argument positions. Continuing the above example:

 h: f[1] one argument is specified, so h is a dyad
 h[2; 3]
6

K Reference Manual 6: Amend, Index, Apply and Assign 147

 e: f[;2] two of three argument positions, one
unspecified, makes e a dyad

 e[1; 3]
6

Note that if all argument positions are unspecified the resulting function is indistin-
guishable from f. See Projection; Fixing Function Arguments in the chapter Func-
tions.

Error Reports

Valence Error if the function is called with too many arguments.

148

Execute
d[s]

Arguments

The argument d is any dictionary and the argument s is a character string.

Definition

d[s] is identical tod @ s (see Value / Execute in the chapter Verbs). Note that
. s is identical to _d[s] .

Error Reports

See Item Index.

K Reference Manual 6: Amend, Index, Apply and Assign 149

Index
d[j;k;�]
d[]

Description

In the first case select items-at-depth from the list or dictionary d, as given by the
index list (j;k;�) . In the second case select all of d.

Argument

For the first expression, the argument d is like the left argument of the verb form of
Index and the list (j;k;�) is like the right argument. The second case is like that
verb form with d as left argument and nil as right argument.

There must be at least one semicolon in the index list (j;k;�) or this is Item
Index.

Definition

d[] is identical tod . _n , or equivalentlyd@!#d for lists andd@!d for dic-
tionaries;

d[j;k] is equivalent to d .(j;k) ;

d[j;k;l] is equivalent to d .(j;k;l) , and so on.

Facts about Index

d[] is a list of values of all entries in a dictionary d.

For atoms j and k, d[j;k] is identical to d[j][k] , and this extends to longer
index lists.

Error Reports

Index Error if any atom in (j;k;�) is not a valid index to the item-at-depth in d.

Type Error if any atom of (j;k;�) is not an integer, symbol or nil.

150

Item Amend
v[i] : y
v[i] f: y
v[i] f:

Description

Modify the entries of the dictionary or items of the list whose name appears in
place of v at indices i with f and, if present, the atom or list y.

Arguments

The first argument v is a place holder for the name of an existing variable. The
value of that variable is like the first argument of the verb form of Amend Item,
except that a handle is not permitted. The second argument i is either a nonnegative
integer atom or list, or a symbol atom or list. The argument f is any verb; the second
of the above expressions corresponds to the dyadic case of f and the third to the
monadic case. The argument y, if present, is any atom or list; i and y must be
conformable in the sense described for the verb form of Amend Item, and if f is
present, items-at-depth in y corresponding to paths in i must be valid right argu-
ments of f.

Definition

In every use of Item Amend, the name of an existing object appears in place of v.
This name must be a valid entry in the current directory (see the introductory re-
marks to this chapter). The value of that variable serves as the first argument d in
the verb form of Amend Item. The remaining arguments i, f, and y serve in their
same roles as in the verb form. For example:

 a: 3 4#!12
 a
(0 1 2 3
 4 5 6 7
 8 9 10 11)
 a[1] : (`ab;"cde") replace item 1 with (`ab;"cde")
 a
(0 1 2 3
 (`ab
 "cde")
 8 9 10 11)

K Reference Manual 6: Amend, Index, Apply and Assign 151

 a[0] +: 10 add 10 to item 0
 a
(10 11 12 13
 (`ab
 "cde")
 8 9 10 11)
 a[2] -: negate item 2
 a
(10 11 12 13
 (`ab
 "cde")
-8 -9 -10 -11)

In all cases the variable whose name appears in place of v is modified, and in that
sense these forms of Item Amend are like the verb form with a handle first argu-
ment holding this name. However, the result of this form consists only of the new
values of the modified or replaced items; it is neither the handle nor the entire
modified value of the verb form. For example:

 a: 1 2 3 4
 r: a[0 2] +: 100 r is the result of the Item Amend
 a
101 2 103 4 the new a
 r
101 103 r holds only the changed items

The last paragraph in the definition of the previous form of Amend applies equally
to this form of Amend.

Error Reports

Index Error if any atom of the index i is not a valid index of the object being
modified.

Length Error if the index i and the last argument y are not conformable.

Type Error if any atom of the index i is not an integer, symbol or nil.

152

Item Index
d[i]

Arguments

The argument d is any list and the argument i is a nonnegative integer atom or list,
or the argument d is any dictionary and the argument i is a symbol atom or list.

Definition

d[i] is identical tod @ i . See Index Item in the chapter Verbs.

Error Reports

Index Error if any atom of i is not a valid index of d.

Rank Error if d is an atom.

Type Error if any atom of the index i is not an integer, symbol or nil (or character
string; see Execute).

K Reference Manual 6: Amend, Index, Apply and Assign 153

Apply Monad
f[i]

Arguments

f is a monadic function and i is a proper argument of f.

Definition

 f[i] evaluates the monad f with argument i.

154

K Reference Manual 155

CHAPTER 7

FUNCTIONS

A function can be defined by entering its defining expressions in order from left to
right separated by semicolons, with a left brace ({) to the left of the first expression
and a right brace (}) to the right of the last expression. The first expression may be
preceded by a bracketed list of names, as in [n1;n2;�;n3], which is the argu-
ment list when the function is applied. For example, if the function interest is
defined as follows:

 interest: { [p;r;t] p * r * t }

then when it is called it will have three arguments, which are the values forp, r
and t, in that order, as ininterest[100;0.075;1] . An empty argument
list, i.e. [], is used for a niladic function, i.e. one with no arguments. If there is no
argument list then the following default arguments are assumed:

• if the name z appears in the expression then the argument list [x;y;z] is
assumed, no matter whether x or y appears or not;

• if y is present but z is not, the argument list [x;y] is assumed;

• if x is present but y and z are not, the argument list [x] is assumed;

• if x, y and z are not present, the argument list [] is assumed.

The value of the right-most expression is the default explicit result of the function
(see Return in the chapter Controls and Debugging for overriding the default). Func-
tions always have explicit results. When there is nothing between the right-most
semicolon and the right brace, or just blank space, the result of the function is nil.

156

For example, the result off[] for the niladf:{a: 10; b: 20; a + b}
will be 30 because the default result line is a + b , but the result ofg[] for the
nilad g:{a: 10; b: 20; a + b;} will be nil because the result line is empty.

Projection; Fixing Function Arguments

Suppose that at a certain point in an application the function Plus is always called
with the same fixed left argument, as in 3+a-b . This occurrence can be viewed as
the monadic function3+x applied toa-b . The expression3+ denotes that
monadic function, and the above expression can be written as (3+)[a-b] . It is
said of the sub-expression (3+) in (3+)[a-b] that the left argument of Plus is
fixed , or that 3 is the fixed left argument of Plus. In addition, the monadic
function 3+ is called a projection of + onto the left argument .

It is not necessary for fixed arguments to be constant, but in most uses they tend to
be fixed relative to other arguments. For example, consider an application of the
adverb Each Right to a dyadic function f, i.e. x f/:y . When evaluated, the func-
tion f is applied #y times, each time with the same left argument x but a different
right argument, the ith itemy[i] for every index i. The value of x may change
from one evaluation of x f/:y to the next, but during any particular evaluation
f is applied with a fixed left argument x and a varying right argument. Note that the
functionality of x f/:y can be obtained by fixing the left argument x to produce
a monadic function, which is expressed asf[x;] , and applying Each to that
monadic function with argument y, as inf[x;]'y . That is, x f/:y is f[x;]'y .

The previous example suggests how Each Right and Each Left can be generalized
to functions of three or more arguments so that Each is applied item-wise to some
arguments but not others. For example, if f has four arguments a, b, c and d and f is
to be applied to all of a and c with each item of b and d, then fix arguments a and
c and apply Each to the resulting dyadic function, as in either of the following two
expressions:

 b f[a;;c;]'d
 f[a;;c;]'[b;d]

It is possible to fix arguments using function expressions, but less convenient. The
first and third arguments of the above function f are fixed in the expression
{f[a;x;c;y]} , and the above application of Each can now be written as ei-
ther of the following:

K Reference Manual 7: Functions 157

 b {f[a;x;c;y]}'d
 {f[a;x;c;y]}'[b;d]

It is not possible to fix the right argument of Plus in the way that the left argument
was fixed above. That is, (3 +) is valid, but (+ 3) is not. However,+[3;]
also expresses fixing the left argument, and the analogous expression for the right
argument,+[;3] , is a valid expression for fixing the right argument.

When a function with fixed arguments is assigned to a name, the fixed arguments
maintain their current values in the object named on the left. For example, sup-
pose:

 A: 3 A is assigned 3

and f is defined as follows:

 f: A + f is assigned Plus with fixed left argument
 f 5 evaluate f 5
8
 A: 6 change A
 f 5
8 f is unchanged; it does not use the new value of A
 (A +) 5
11 the fixed left argument in A + is the new value of A

Just as when the adverb Over is applied to f and the resulting function is called f-
Over, a projection of f is called f-Onto, as in f-Onto the second and fourth argu-
ments for f[;a;;b]. See Apply in the chapter Amend, Index, Apply and Assign.

Localization

A name that begins with a dot is called an absolute referent , and one that begins
with an alphabetic character is called a relative referent .

All relative referents assigned a value via single colon Amend of the form a:b in
a function expression are local names. The names of the arguments are also local.
In fact, local names are strictly local, in that their values cannot be seen outside the
function expression or inside any function called within the function expression.

158

Use double colon Amend or the handle case of Amend, Amend Item or Item Amend
to assign global variables with relative referents within function expressions. In the
case of double colon assignment, the relative referent will be resolved in the direc-
tory that was the current directory when the function expression was defined. In the
cases where a handle is used, the relative referent that is the contents of the handle
will be resolved at run-time, in the directory that is current when the function is
called.

Global variables identified by absolute referents can be assigned values by any of
the various assignment methods within function expressions, i.e. single and double
colon Amend and any of the handle cases.

Local Functions

Suppose that the function g is defined within the body of another function f and
uses the variable x in its definition, where x is local to f. Then x is a constant in g,
not a variable, and its value is the current one when g is defined. For example, if:

 f:{b:3; g:{b}; b:4; g[]}

The value of f is the value of the local function g, which turns out to be 3, the
value of b when g is defined, not the subsequent value 4.

 f[]
3

K Reference Manual 159

CHAPTER 8

ATTRIBUTES

An attribute is a global variable with a special association to another global vari-
able. Attributes are either primitive , i.e. part of the K language definition, or user-
defined. The association between a variable and one of its attributes is expressed in
their names. For example, for the variable named v its format attribute is named
v..f .

The attribute dictionary of v , denoted by v. , contains all attributes of the vari-
able v. Since attributes themselves are true variables they also have attributes, and
these in turn have attributes themselves, and so on. In practice, however, it is rare to
go beyond attributes of attributes of ordinary variables. And attribute dictionaries,
which are also true variables, do not themselves have attributes.

The name of an attribute of a variable is formed by the variable name, followed by
a dot to signify the attribute dictionary of the variable, followed by another dot to
signify an entry in that dictionary, followed by the attribute name. For example,
v..f is the format attribute of v.

Primitive attributes have special effects on the variables they modify defined by
the K language (see the definitions below), while user-defined attributes have user-
defined meanings. Typically, a user-defined attribute would be auxiliary informa-
tion about a directory that organizationally does not belong among the directory
entries. For example, a directory might represent a view of a relational table with
its entries as fields, and the name of the view’s base table(s) could be a user-de-
fined attribute of the view.

Primitive attributes have implicit default values, but not explicit ones. That is, ref-
erencing an attribute for a variable when that attribute has not been given a value
will not necessarily give the default value.

160

Arrangement
v..a

If v is a dictionary that is classified as `form , then v..a is a symbol list whose
atoms are entries in v, such that the arrangement of the atoms in v..a specifies
the arrangement of the entries on the screen when v is displayed. The depths of the
atoms in v..a indicate whether the corresponding entries are within vertical or
horizontal sections of the display. For example:

 \d p create a dictionary p, and then create six entries
 a: 10 + b: 10 + c: 10 + d: 10 + e: 10 + f: 10
 \d ^ go up one level
 p..c: `form make p a form
 `show $ `p display it

At this point the entries of p are displayed vertically in what looks like random
order. (Actually, it is the order in which the variables were created.) To display
them vertically in the order a through f, setp..a to ̀ a`b`c`d`e`f . To dis-
play them horizontally in that order, setl..a to ,`a`b`c`d`e`f . The top-
level of p..a indicates vertical order (one list item), and the next level horizon-
tal (six items). To display a and b horizontally above c, d, e, and f horizontally,
set p..a to (`a`b;`c`d`e`f); the top level of p..a indicates vertical
order (two items) and the next level horizontal (two items in one and four in the
other). And so on. The following figures show various arrangements of this form.

p..a:`a`b`c`d`e`f p..a:,`a`b`c`d`e`f

K Reference Manual 8: Attributes 161

p..a:(`a`b;`c`d`e`f) p..a:(`a`b;`c;(`d;`e`f))

Background Color / Foreground Color
v..bg
v..fg

These attributes specify the background and foreground colors on the object v. The
foreground color applies to display of the object’s data, while the background color
applies to the region in which the data is displayed. Distinct colors are specified as
nonnegative integer atoms with at most 6 meaningful digits, arranged as rrggbb.
That is, if c is such an integer atom then

 100 100 100 _vs c

consists of three integers with values between 0 and 99 that depend only on the
right-most six digits of c. The first of the three integers specifies the intensity of red
in the resulting color, from none (0) to maximum intensity (99), the second speci-
fies the intensity of green, and the third, blue. For example, 990000 is pure red,
9900 is pure green, 99 is pure blue, and 990099 is purple formed from equal inten-
sities of red and blue. Also, 0 is black and 999999 is white.

Any integer c can specify a color, and if its value is not between 0 and 999999 then
the residue c!1000000 is used. For example, white can be specified as -1.

The value of the color attribute can be an integer atom, which applies to every data
item on the screen, or an integer list, with (possibly) a different color value for each
data item, or a monadic function, whose argument is the value of the data item to

162

be colored, or a niladic function. In the case of a function, the system variables _v
and _i are available. These functions have access to any entry in the K-tree, but
cannot modify the value of v.

Class
v..c

This attribute classifies the format of the display of the associated variable v . The
meaningful values are `form , ̀ data , ̀ chart , ̀ plot , ̀ button , ̀ check ,
and ̀ radio . The default is ̀data , with the following exception: the default
display class of a dictionary is `form if the display class of any entry has been
specified, or if some entry is a dictionary whose default display class is `form .
See the chapter Screen Displays for examples of the display classes.

Click / Double Click
v..k
v..kk

A mouse click event is said to occur on v when a mouse button is pressed while the
mouse cursor is in the data area of the screen display of v. A double click event
occurs when a second mouse click event on v occurs almost immediately after the
first. The click and double click attributes are character strings holding expressions
that are executed whenever click and double click events occur. Note that the click
attribute expression is executed on the first click in a double click sequence, but
not on the second click.

Dependency
v..d

The value of this attribute is a character vector holding the dependency definition
of the associated variable v . See the topic Dependencies in the chapter Terminol-
ogy . In principle, a dependency should not explicitly set the values of items on the
K-tree, but if v happens to be set while the value of v..d is executing, that setting
will not cause v..d to execute again. Cycles in dependency relations are not
permitted, i.e. a variable cannot be dependent on itself.

K Reference Manual 8: Attributes 163

Editable
v..e

This attribute specifies whether or not the data items of v on the screen can be
edited, with a 0 for no and a 1 for yes. The value of this attribute can be an integer
atom, which applies to every data item on the screen, or an integer list, with (possi-
bly) a different editable setting for each data item, or a monadic function, whose
argument is the value of the data item to be edited, or a niladic function. In the case
of a function, the system variables _v and _i are available and the result indicates
whether or not the _ith item (or item-at-depth) of the variable on the K-tree named
in _v can be edited. These functions have access to any entry in the K-tree, but
cannot modify the value of v.

Format
v..f

The value of this attribute is a monadic function used to format the items or items-
at-depth in the screen display of the associated variable v . The result of the func-
tion should be a character vector. Typically, the function is a projection of the dy-
adic Format primitive function onto a fixed left argument, as in:

 v..f: 8.2 $

or a more specialized formatting function, say for dates and time.

Help
v..h

The value of this attribute is a character vector holding descriptive information on
the associated variable v , typically for the user of an application. Eventually it will
be automatically displayed when the screen display of v has focus and some to-be-
defined action is taken.

164

Label
v..l

The value of this attribute is a character vector. For certain display formats, in the
absence of a value for this attribute the name of the associated variable is used to
label the object; for example, see the earlier figure showing various arrangements
of a form under the Arrangement attribute, where the names a through f are used.
If this attribute has a value then the text in the character vector is used as the label.

Option List
v..o

Option Lists are symbol vectors that are associated with the radio display class. If v
is classified as ̀radio then its display has n entries, where n is the count of
v..o , and the label on the ith radio button is the text in the ith item of v..o . The
value of v must be one of the entries in v..o ; when the ith radio button is
pressed the value of v becomes v..o[i] .

Trigger
v..t

The value of this attribute is a character vector holding the trigger definition of the
associated variable v . See the topic Triggers in the chapter Terminology. The pur-
pose of triggers is to have side effects; a value produced by a trigger expression is
ignored. Note that if the value of v happens to be set while the trigger v..f is
executing, that set will not cause v..f to execute again. Neither will a set of v
due to the evaluation of its dependency expression v..d .

Update
v..u

The value of this attribute is a dyadic function used to produce the new value of v
when v is modified on the screen. When an item of v is changed on the screen, the
validation function (see Validation below) is first called by k to produce the poten-
tial new value — say y — of that item from the character string on the screen, and
then v is amended by k as follows:

 .[` v; _i; v..u; y]

K Reference Manual 8: Attributes 165

In particular, the first argument of this attribute is the old value, and the second
argument is the new value.

An update function checks that the proposed value is valid, modifies that value or
sets other variables on the K-tree as appropriate, and if the proposed value is in-
valid can signal an error (see Signal in the chapter Controls and Debugging) to
abort the update.

When an update function is called, the left argument holds the value to be replaced
and the right argument holds the proposed new value. The system variables_v
and _i are available, indicating which item _i (or item-at-depth) of which
variable _v on the K-tree is to be updated.

The default value of v..u is ordinary assignment, i.e. in the case when v..u is
not specified, the amending expression is:

 .[` v; _i; :; y]

Everything done by an update function can also be done by a validation function,
but it is often useful to separate the activity of undoing the formatted character
string on the screen (validation) from updating the value of a variable, particularly
when other settings of the variable must also be monitored. Any explicit setting,
i.e. one that appears explicitly in the code, can be done using the same update
function in an explicit amend expression, as in:

 .[` v; i; v..u; y]

Validation
v..g

The value of this attribute is a monadic function that is essentially an inverse to the
monadic function in the Format attribute of the associated variable v. Its argument
is a character vector and its result is an appropriate item or item-at-depth in v.
When an item on the screen is modified this function is called with the contents of
that item as a character vector. A validation function should simply return the ap-
propriate value represented by the character string if the representation is valid,
and otherwise signal an error (see Signal in the chapter Controls and Debugging)
to abort the change.

The default value of the validation attribute is the dyadic primitive function Form
with the left argument appropriate to the data type of v.

166

Width / Height
v..x
v..y

The values of these attributes are the minimum width and height of the object v on
the screen, where the units of length are, respectively, the average character width
and average character height of the data font (see the operating system appendices
in the K User Manual for the ways in which the data font can be specified). The
settings of these attributes on a form will be ignored if they are inconsistent with
the sizes of the entries in the form.

K Reference Manual 167

CHAPTER 9

CONDITIONALS

Conditional Evaluation
:[cond; true; false]
:[cond1;true1; cond2;true2; �; condN;trueN; false]

The first expression is the simplest form of conditional evaluation. All three of
cond , true , and false denote expressions. If the result of cond is a non-
zero integer, the conditional evaluation is the result of true , but if the result of
cond is 0, the conditional evaluation is the result of false .

The second expression above denotes the general form of conditional evaluation.
If the result of cond1 is a non-zero integer, the conditional evaluation is the result
of true1 . Otherwise, if the result of cond2 is a non-zero integer, the condi-
tional evaluation is the result of true2 . And so on, until finally, if the result of
condN is a non-zero integer, the conditional evaluation is the result of trueN,
but if the result of condN is 0, the conditional evaluation is the result of false.

Note that the meanings of the expressions in a conditional evaluation alternate
between conditions and conditionally executed expressions. The result of a condi-
tional evaluation is the result of the conditionally executed expression whose con-
dition is true, or nil if all conditions are false.

Error Reports

Type Error if any of the condition statements do not have integer atom values.

168

Do
do[count; expression]
do[count; expression1;�; expressionN]

The effect of the first Do statement is to execute the expression count times,
while in the second case the expression list is executed count times. For example:

 i:0
 do[5; i+: 1]
 i
5

As with function expressions and conditional evaluation, a list of expressions is
executed from left-to-right, or top-to-bottom if the expressions are on separate lines.
For example, the following Do statements are equivalent:

 do[n; f[x;y]; g[x;y;z]]

and

 do[n
 f[x;y]
 g[x;y;z]]

Do statements do not have results, or rather, their results are always nil.

Error Reports

Type Error if the count statement does not have an integer atom value.

K Reference Manual 9: Conditionals 169

If
if[condition; expression]
if[condition; expression1;�; expressionN]

The effect of the If statement is to execute expressions conditionally depending on
the value of the condition expression. In the first case, expression is executed if the
value of the condition expression is not equal to 0. In the second case, the expres-
sion list is executed. For example:

 a: 10 a: 10
 if[3<4; a: 20] if[3>4; a: 20]
 a a
20 10

Like the Do statement, a list of expressions is executed from left-to-right, or top-to-
bottom if the expressions are on separate lines. The If statements do not have re-
sults, or rather, their results are always nil.

Error Reports

Type Error if the condition statement does not have an integer atom value.

170

While
while[condition; expression]
while[condition; expression1;�; expressionN]

The effect of the first While statement is to repeatedly execute the expression as
long as the condition has a nonzero value, while in the second case the expression
list is executed repeatedly. For example:

 i:0
 while[5 > i; i+: 1]
 i
5

Like the Do statement, a list of expressions is executed from left-to-right, or top-to-
bottom if the expressions are on separate lines. The While statements do not have
results, or rather, their results are always nil.

Error Reports

Type Error if the condition statement does not have an integer atom value.

K Reference Manual 171

CHAPTER 10

CONTROLS AND DEBUGGING

The examples in this chapter assume that the error flag is set to 1, i.e.

 \e 1

See Error Flag in the chapter Commands.

Abort
\

Abort causes the most recent suspended execution to be abandoned and its execu-
tion stack to be cleared. For example:

 5 * 3 + "a"
type error
3 + "a"
 ^
> \ Prompt indicates a suspension; abort with \
 3 + 97 The prompt indicates no suspension; continue

Each \ clears one suspension; it is not possible to abort more than one suspension
at a time. For example, if a second error had occurred above, the situation would
have been:

>> \ Abort the most recent suspension
> \ One suspension remains; abort it

No suspensions remain

Abort can also be used to escape early from either loading or step-loading a K
script (see Load and Step in the chapter Commands).

172

Comment
/text

A comment may be placed at the end of a line by entering the slash character
followed by the text of the comment. The slash character must be preceded by a
space (or be the first character on a line) in order to denote a comment. Otherwise,
K will assume it denotes Over, or perhaps is part of Each Right. For example:

 15 * 17 / This should be 255
255
/And it is!

Resume
:
: x

Execution is suspended when a primitive function fails or a Stop control statement
is executed (see Stop / Trace). To resume execution after a failed primitive, enter
colon (:) followed by a value to serve as the value of that failed primitive. For
example:

 4 # 3 + "a"
type error
4 # 3 + "a"
 ^
> : 3 + 97
100 100 100 100

A colon was entered on the next-to-last line, followed by the expression 3+97 ,
and execution resumed with 100 as the value of the failed +. That value became the
right argument to # (with left argument 4), resulting in 100 100 100 100 .

If execution is suspended because of a Stop control statement, nothing has failed; it
is not necessary to supply a value in order to resume. In this case simply enter colon
alone on the input line to resume execution.

K Reference Manual 10: Controls and Debugging 173

Return
: x

When this expression is executed in the course of executing a function expression,
the effect is to end execution of that function and return with the result x. It is most
often used with If and Conditional Evaluation (see these topics in the chapter Con-
ditionals).

Signal
'
' x

The effect of Signal is to cause a K-like error from within a function expression, or
to signal one level up the execution stack in immediate execution mode.

Only 'x , and not quote alone, can be used in a function expression. When ex-
ecuted, the effect is to cause a K-like error to be reported in the K session, as
follows:

• x is a symbol or character vector containing the text of the error report;

• the function in which the signal occurred is treated like a primitive, in that
the line with the function application is displayed, not the line within the
function where 'x occurs;

• the up-caret (̂) is placed beneath the beginning of the function expression,
or the beginning of the function name, whichever appears in the displayed
line;

• execution is suspended and the prompt > is displayed;

• Resume (See Resume) can be used to resume execution, just as with a failed
primitive.

For example, here is a K error report for a failed primitive:

 5 * -4.0 ^ 0.5
domain error
5 * -4.0 ^ 0.5
 ^
> : 4.0 ^ 0.5 Most likely, -4 should have been 4
10

174

Compare this to an error report for a failed function expression:

 SQRT:{:[~ x < 0; x ^ 0.5; ' `"domain error"]}
 5 * SQRT -4.0
domain error
5 * SQRT -4.0
 ^
>

Resume with the value SQRT 4.0 :

> : SQRT 4.0
10

The value of SQRT 4.0 was used as the right argument to Times (with left
argument 5) when execution resumed.

Both forms of Signal are valid in immediate execution mode. For example, sup-
pose the SQRT function had not signalled, but had simply been defined as:

 SQRT:{x ^ 0.5}

and the same expression as above had been executed:

 5 * SQRT -4.0
domain error
{ x ^ 0.5}
 ^
>

At this point Resume could be used to continue execution from the point of error.
However, in debugging it is often helpful to see the actual application of the func-
tion, which does not appear in the error report. This can be accomplished by signal-
ling, which has the effect of passing the error up one level of the execution stack.
Continuing the example:

> ' "x^0.5 error"
x^0.5 error
5 * SQRT -4
 ^
>

K Reference Manual 10: Controls and Debugging 175

Execution can now be resumed from this point, or abandoned with Abort, or Signal
can be used again to signal up another level. If SQRT was a more complicated
function, then generating an error message like "x^0.5 error" to indicate the
reason for the suspension might be useful in the session log. However, it is often
not necessary, and all one wants to do is signal one level up. This can be done with
quote alone (there is no expression to its right), which has the same effect as ' ""
or ' ` , i.e. signalling with an empty error message.

Stop / Trace
\ x

When \ is placed to the left of an expression in a function expression, as if it were
a monadic function to be applied to the value of that expression, there are two
possible effects: immediately after the expression is evaluated during function ex-
ecution, either its value is displayed or execution of the function is halted. When
values are displayed the effect is called atrace , and when execution is halted it is
called astop . Whether back-slashes cause traces or stops is controlled by the
execution monitor command \b , also called the break flag. It is also possible to
turn off stops and traces with this same command, and without removing the back-
slashes.

176

K Reference Manual 177

CHAPTER 11

I/O AND COMMUNICATION

The definitions of the primitive functions3: and 4: describe the default behav-
ior of interprocess communication among k processes. See the section Interprocess
Communication at the end of this chapter for how the default behavior can be
modified.

Load / Save Text File
0: f
f 0: x
` 0: x

Description

Load text files as string vectors, and save such string vectors as text files.

Arguments

The argument f is a symbol atom, character atom or character string, while x is a
character atom or string, or string vector.

Definition

In either of the first two cases f holds the name of a file, including any directory
path information. The monadic function0:f loads the file named in f into the
workspace as a string vector. Each byte in the file becomes a character in the result,
except for new-line characters, which have the effect of separating one character
string from the next.

178

The dyadic function f 0: x saves the string vector x in the file named in f, where
x[0] becomes the first line in the file, x[1] the second, and so on. New-line
characters are inserted between successive character vectors. Blanks at the end of
character strings are preserved. The result is always nil.

There is a special case of the dyadic function where f is the empty symbol, in
which case the contents of what would otherwise have been written to a file are
simply displayed in the session log.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Type Error if either f or x are not as described above.

K Reference Manual 11: I/O and Communication 179

Load Text File as Fields
(s;w) 0: f
(s;w) 0: (f;b;n)

Arguments

The right argument f is a symbol atom, character atom or character vector, while
the left argument is a two-item list whose first item s is a character vector and
second item w is an integer vector. The two vectors have the same count.

In the second case, the right argument is a three-item list where f is as described
above, and b and n are integers.

Definition

The argument f holds the name of a text file, including any directory path informa-
tion. Each line of this file is presumably a record of fixed-width fields. The purpose
of this function is to load the file into the workspace in such a way that each row is
partitioned into fields of widths and types specified by the left argument. The result
is a matrix whose items have count equal to the number of rows in the file, and
whose ith item holds the contents of the ith field.

The left argument(s;w) specifies how the rows are to be partitioned. The first
item is a character vector and the second item is an integer vector. The two vectors
have the same count, which is the number of logical fields. The ith items of the
vectors describe the ith field. Each item in the character vector s is one of "IFCS ",
where:

• I means integer field, which comes into K as an integer atom;

• F means floating-point, which comes in as a floating-point atom;

• C means character, which comes in as a character vector;

• S means symbol, which comes in as a symbol atom;

• blank means skip.

The ith item of the integer vector is the width (in characters) of the ith field.

For example, suppose the file named in f has the following two rows:

1050 1.234 abcdef ghi
234 1e50 gqw xy

180

where there is a space at the end of the second row. Then:

 ("IFCS"; 7 9 10 3) 0: f
(1050 234
 1.234 1e+50
 ("abcdef "
 " gqw ")
 `ghi `xy)

Note the extra padding on the two character vectors. These could be loaded using
width 6 to avoid unnecessary padding, and skipping the 4 blanks that follow:

 ("IFC S"; 7 9 6 4 3) 0: f
(1050 234
 1.234 1e+50
 ("abcdef"
 " gqw ")
 `ghi `xy)

The second form of dyadic0: permits more flexible loading of exceptionally
large files. In this case, f is a file as previously described, b is an offset into that
file, and n is a length. Both b and n are in units of bytes.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Domain Error if the contents of a field specified as integer or floating-point field
are not a valid representation of that type of number.

Length Error if the length of the lines in the file are not all equal to the total of the
field widths in s, i.e. +/s[1].

K Reference Manual 11: I/O and Communication 181

Load/Save K Data as K Files
1: f
f 1: x

Arguments

The argument f is a symbol atom or character vector, while x is any atom or list. In
the first case, Load K Data (monadic 1:), f may also be a character atom.

Definition

In either case f holds the name of a file, including any directory path information.
The monadic function1: f loads that file into the workspace as a data object,
which is the result of the function. The dyadic functionf 1: x saves the data x
in a file in the format of a K data object. Presumably the monadic function is
applied to a file that has been previously created with the dyadic function.

Note: The actual name of the file referred to by f may differ from the name held in
f, typically by the extent .K on Unix systems and by .L on NT. For example, if f
is "/dir/prices" then the actual file name would be/dir/prices.K on
Unix, or /dir/prices.L on NT. The full file name including the suffix is per-
mitted for f, but is not portable.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which
case an operating system message may be displayed as well.

Nonce Error if the file indicated by f exists, but does not contain valid K data.

Type Error if either f or x is not as described above.

182

Load Binary File as Fields
(s;w) 1: f
(s;w) 1: (f;b;n)
c 1: f or c 1: (f;b;n)

Arguments

The right argument f is a symbol atom, character atom or character vector, while
the left argument is a two-item list whose first item s is a character vector and
second item w is an integer vector. The two vectors have the same count.

In the second case, the right argument is a three-item list where f is as described
above, and b and n are integers. In the third and fourth cases, c is a character. Only
the options "c" or "i" or "d" for c are allowed.

Definition

The argument f holds the name of a binary file, including any directory path infor-
mation. The length of the file, L, must be an integral multiple of W, the sum of the
field widths specified in the second item of the left argument. The purpose of this
function is to load the file into the session as a matrix whose items have count
equal to L%W, and whose ith item holds the contents of the ith field.

The left argument specifies how the file is to be read. The first item s is a character
vector whose count is the number of logical fields, and whose items are one of
"cbsifd CS" , each of which refers to a C language data type. Specifically:

• c means one-byte character field, which comes into K as a character atom;

• b means one-byte integer field, which comes into K as an integer atom;

• s means two-byte integer field, which comes into K as an integer atom;

• i means four-byte integer field, which comes into K as an integer atom;

• f means four-byte floating-point field, which comes into K as a floating-
point atom;

• d means eight-byte double, which comes in as a floating-point atom;

• blank means skip;

• C means string, which comes into K as a character string;

• S means string, which comes in as a symbol atom.

K Reference Manual 11: I/O and Communication 183

The second item w is an integer vector of the same count as the character vector,
whose items are the widths of the fields. See the example in Load Text Files as
Fields.

In the special case of the left argument "c" , the entire file (including any null
bytes) is read into a character string whose length equals the number of bytes in the
file. If the left argument is "i" (or "d") the entire file is read into an integer
vector (or floating-point vector) with 4 (or 8) bytes to the item; the length of the file
must be a multiple of 4 (or 8).

The second form of dyadic1: permits more flexible loading of exceptionally
large files. In this case, f is a file as previously described, b is an offset into that
file, and n is a length. Both b and n are in units of bytes.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, in which case
an operating system message may be displayed as well.

Domain Error if the contents of a floating-point field are not a valid representation
of that type of number.

Length Error if the length of the file is not an integral multiple of the sum of the
field widths in s, i.e. +/s[1] .

184

Copy K Data from K File
2: f

Arguments

The argument f is a symbol atom, character atom or character vector.

Definition

The argument f holds the name of a file, including any directory path information.
Presumably f has been previously created with the Save K Data variation of dy-
adic 1:. Monadic 2: copies f into the workspace as a data object, which is the
result of the function. The significant difference between this function and monadic
1: (Load K Data) is that in the latter case the file is actually mapped rather than
copied, and therefore certain operations on the contained data are restricted. See
also the section Load/Save K Data as K Files.

Note: The actual name of the file referred to by f may differ from the name held in
f, typically by the extent .K on Unix systems and by .L on NT. For example, if f
is "/dir/prices" then the actual file name would be/dir/prices.K on
Unix, or /dir/prices.L on NT. The full file name including the suffix is per-
mitted for f, but is not portable.

Error Reports

Domain Error if the file named in f does not exist or canno t be found, in which
case an operating system message may be displayed as well.

Nonce Error if the file indicated by f exists, but does not contain valid K data.

K Reference Manual 11: I/O and Communication 185

Link Object Code
f 2: (e;t)

Arguments

The argument f is a character vector, e is a character vector, and t is an integer.

Description

Use compiled code like defined functions.

Definition

This function links the object file named in f into the K process. The name of this
file and the way it is created varies with the host operating system; see the K User
Manual. The character string e holds the name of a function in the object file to be
made into a K function. The result is that K function, which is usually assigned to
a name in the K session for future use. The non-negative integer t is the number of
formal parameters declared for the external function. The valence of the resulting
K function is also t.

The external function described by string e must have return type and parameters
which conform to the internal K data type, as specified in the interface description
appropriate to the programming language and operating system in which the func-
tion is written and compiled.

Error Reports

Domain Error if the file named in f does not exist or cannot be found, or if the
function or module e cannot be located within f. In these cases, an operating sys-
tem message may be displayed as well.

Type Error if any of f, e and t are not as described above.

186

Communication Handle
3: (n;p)

Arguments

The first item of the argument, n, is a symbol atom and the second item, p, is an
integer atom.

Description

Identify a communication partner.

Definition

The symbol n holds the name of the machine and the integer p is the communica-
tion port number of another K process, presumably one with which this one wants
to establish communication. The result is an integer atom, which is the communi-
cation handle to be used as a left argument to Remote Get and Remote Set. (The
pair (n;p) can also be used as a left argument in these cases.)

The symbol n may be the empty symbol `, in which case the machine is assumed to
be the local host. In other words, the communication partner to be identified is a K
process running on the same machine. Four number internet protocol (IP) addresses
in the form ̀ "999.999.999.999" may also be used for n.

Whenever a message is received from a partner, the system variable _w holds the
communication handle of that partner. Consequently, only the partner who initiates
the communication may need to use this function: if the first message is a remote
set of a global variable which has a trigger, the trigger can inspect _w to get the
communication handle of the new partner.

The communication port number p is established in various ways, depending on
the host operating system. See the section Interprocess Communication and the K
User Manual.

Error Reports

Domain Error if the partner identified by the pair (n;p) is not available.

Type Error if n or p is not as described as above.

K Reference Manual 11: I/O and Communication 187

Close Handle
3: h

Arguments

The argument h is an integer atom.

Description

End communication with this partner.

Definition

The argument h is a communication handle, e.g. the result of 3:(n;p) or a value
of _w . The effect is to close this communication channel.

Error Reports

Domain Error if the argument is not an active communication handle.

Type Error if h is not an integer atom.

188

Remote Set
t 3: x

Arguments

The argument t, which identifies another K process, is described in Communica-
tion Handle. The symbol ` is also allowed for t. The argument x can be any atom
or list.

Description

Set a value in another process.

Definition

Assume for now that t is not `. For convenience the process in which these expres-
sions are being executed and the process identified by t will be referred to as the
current process and the other process, respectively. Also, the right argument is some-
times called a set message, and it is said that a set message is sent to the other
process.

Expressions are executed in another process for one of two purposes, either to set a
value in the other process or to get a value from the other process. If the purpose is
to set a value, as it is for Remote Set, then the message is sent asynchronously. That
is, execution oft 3: x completes immediately, even though the message may
still be on its way or is still being evaluated in the other process. In the absence of
a message filter .m.s in the other process (see Interprocess Communication),
when the message x is received it will be processed by the function

 {:[4:x; .x; .[.;x]}

In effect, x can be a valid argument of Value/Execute, or a two-item list whose first
(second) item is a valid left (right) argument to Index or Apply, or a three-item or
four-item list that corresponds to a valid argument list to Amend. The only restric-
tion is that a function must be a primitive function or a primitive derived function.
Even though all such messages will be executed in the other process, the only
effective ones are those that set a value, such as "a:2+3" or (`a;();:;5) .

When t is ̀ then x is a character string holding an operating system command, and
the effect of this function to have the command executed.

The result of sending a set message is always nil.

K Reference Manual 11: I/O and Communication 189

Error Reports

Domain Error if the left argument t is an invalid communication handle, or if valid,
the partner identified by t is not available.

An error can occur in the other process.

190

Internal Data Type
4: x

Argument

The argument is any atom or list.

Definition

The result is the data type of the argument x, as an integer. Data types are as tabu-
lated below.

Data Object Type

Integer Atom 1

Floating-point Atom 2

Character atom 3

Symbol Atom 4

--

Integer Vector -1

Floating-point Vector -2

Character Vector -3

Symbol Vector -4

--

Other List 0

Dictionary 5

Nil 6

Function 7

K Reference Manual 11: I/O and Communication 191

Remote Get
t 4: x

Arguments

The argument t, which identifies another K process, is described in Communica-
tion Handle. The symbol ` is also allowed for t. The argument x can be any atom
or list.

Description

Get a value from another process.

Definition

Assume for now that t is not `. For convenience the process in which these expres-
sions are being executed and the process identified by t will be referred to as the
current process and the other process, respectively. Also, the right argument is called
a get message, and it is said that a get message is sent to the other process.

Expressions are executed in another process for one of two purposes, either to set a
value in the other process or to get a value from the other process. If the purpose is
to get a value, as it is for Remote Get, then the message is sent synchronously;
execution oft 4: x does not complete until the message has been received, pro-
cessed, and sent back by the other process, and finally received by the current
process and made the result oft 4: x . In the absence of a message filter .m.g
in the other process (see Interprocess Communication), when the message x is
received it will be processed by the same function as set messages (see Remote
Set), and therefore x can have any of the forms for set messages. However, the
effective get messages are not the same as set messages, but instead those that get
values from the other process, such as `a or (a;!10) .

When t is ̀ then x is a character string holding an operating system command, and
the effect of this function to have the command executed. Since the operating sys-
tem is sent a get message, the result of the command is returned as a list of charac-
ter strings.

Error Reports

Domain Error if the left argument t is an invalid communication handle, or if valid,
the partner identified by t is not available.

Domain Error if the other process cannot return a result for this right argument.

192

An error can occur in the other process.

K Reference Manual 11: I/O and Communication 193

Executable Form
5: x

Argument

The argument x is any atom or list.

Description

Give the character vector form of the default display of the argument.

With the exception of expressions that end in certain forms of Amend (see the
chapter Amend, Index, Apply, and Assign), whenever an expression is typed in a
K-session its value is displayed. That display can be captured by applying 5: to
the expression. The result is a character vector containing the display; new-line
characters are used when the display requires more than one line. The Execute
primitive can be applied to the result to reproduce the value. Consequently, this
primitive is useful for capturing complicated constants in script files. If c is such a
constant, simply write5: c to a text file with0: and copy that text file into the
script file.

194

Synchronized File Append
f 5: c

Arguments and Result

The left argument f is a symbol atom, character atom or character vector, and the
right argument c is a general list. The result is an integer atom.

Description

The left argument f holds the name of a file created byf 1: b for some K ob-
ject b that is a general list. The effect of this function is to append the general list c
to that file. The result is the count of the list in that file after the append takes place.

If the file named in f does not exist then this function is identical tof 1: c,
except that the result is the count of c.

In all cases, execution of this function does not complete until the updated file is
actually written to disk.

K Reference Manual 11: I/O and Communication 195

Interprocess Communication
A K server process is created using the -i command line option. For example, the
following starts a server at port number 1234:

k -i 1234

(See the K User Manual for more information.) Production applications often need
ways to monitor clients connecting to servers and the messages clients send. These
facilities are provided by the contents of the root directory .m, which is present in
every k session.

Authorization Vector
.m.u

The symbol vector .m.u contains the names of users that are permitted to connect
to the process in which .m.u is defined.

Closed Connection Callback
.m.c

The character string .m.c is automatically executed when the connection to an-
other process is broken.

Message Filters
.m.g
.m.s

Message filters provide the means to monitor messages received from other pro-
cesses. In the discussion below a get message will always mean one sent to this
process by way of 4:, and a set message will always mean one sent by way of 3:.

The message filter .m.g applies to get messages and is called the get message
filter, while .m.s applies to set messages and is called the set message filter. The
message filters replace the default message evaluation functions. Both filters are
monadic functions which are automatically evaluated whenever a message of the
appropriate type arrives. The argument to a message filter is always the entire mes-
sage, i.e. the entire right argument of3: or 4:, no matter what form that argu-
ment takes. The result of the get message filter is returned to the process that sent
the message; the set message filter has no meaningful result.

196

Message filters have two general uses. First of all, they permit any form of message
to be sent, whereas the default message evaluation functions fail in the general
case. Secondly, while .m.u allows only authorized users to send messages to a
process, not all authorized users are necessarily the same; often some can send
messages of particular forms that others cannot. Message filters provide the means
to monitor the messages of authorized users.

Synchronous Connection Filter
.m.h

This message filter applies to general synchronous interprocess communication
provided by the -h listening port option (see the K User Manual). It is somewhat
similar to the get message filter .m.g, but the communication partner (i.e., the
client) need not be another K process. The argument to .m.h is the data received
from the partner, as a character array. As long as .m.h returns nil, more data is
read, in each instance becoming the next argument to the filter. When the return
value is non-nil, it is sent back to the client, the current connection is closed, and
the -h port returns to its previous listening state.

When .m.h is not defined, the default behavior is to echo all received data back to
the client.

K Reference Manual 197

CHAPTER 12

COMMANDS

Commands are statements that display and set K system parameters, load source
code, monitor and control execution, and send non-K commands to the host oper-
ating system for execution. Commands do not have explicit results, cannot be part
of expressions, and cannot be directly executed within function expressions. How-
ever, commands can be executed indirectly by way of the Value/Execute primitive
function.

Adverbs
\'

Online help for adverbs.

Assignment, Functions, Control
\:

Online help for assignment, functions, and control statements.

Attributes
\.

This command causes a summary of all primitive attributes and their meanings to
be displayed in the session log.

198

Break Flag
\b [character]

The settings of this command distinguish whether all Stop / Trace commands mean
stop (\b s), trace (\b t), or have no effect (\b n). If a character is not
present, the current setting is displayed.

Commands
\

This command causes a summary of all commands to be displayed in the session
log.

Console Flag
\c boolean

This flag controls activation of the user console. When \c 0 is executed, the con-
sole is closed. If there are no current communication partners nor active K graphi-
cal objects associated with the session, then the parent K process is terminated. If
the session remains active after the console is closed, and a signal or error condi-
tion arises which requires console input, then the console reappears (see Error Flag).

If \c 1 is executed while the console is down, the console reappears. Otherwise,
the command has no effect. The console may also be retrieved from any K graphi-
cal object associated with the session by typing <ctrl-K> from within the object.

Data and I/O Verbs
\0

Online help for data representation and I/O verbs.

Directory
\d [name]

The directory command is used to specify the current directory to be the one named
in name, or display the name of the current directory if name is not present. The
significance of the current directory is that all relative names that are assigned
values will be relative to the current directory. This makes it convenient when
writing utility programs; simply set the current directory in the utility script to the
one in which the utilities will reside in the first line of the utility script, and then

K Reference Manual 12: Commands 199

relative names can be used instead of fully qualified ones from that point on. Use
the absolute name of the utility directory when setting the current directory so that
the utility can be properly loaded from anywhere within an application script.

As a convenience, if ^ or ~ appears in place of name , then the parent or attribute
directory of the current directory, respectively, becomes the new current directory.

The default current directory at the beginning of the K session is .k .

The setting of \d is overridden by the setting of the system variable _d . As a
consequence, if a script is loaded while an expression is executing, any settings of
\d in that script will not take effect.

Directory Entries
\v [directory]

A list of names of all global variables in directory is displayed, or the current
directory if directory is not present, or the parent or attribute directory of the
current directory if directory is ̂ or ~ , respectively.

Error Flag
\e [boolean]

The debug flag controls the behavior of the interactive environment in response to
an error in a primitive function or a signal in a defined function. The default behav-
ior, which occurs when the setting is 0, is to report the error or signal in the interac-
tive session and wait, unsuspended, for the next input. When the setting is 1, which
is assumed for the descriptions in the chapter Controls and Debugging, the error is
reported or the signal occurs, as before, but execution is suspended. In this case,
the context of the interactive session is the same as that existing at the time of the
error or signal.

If no boolean setting is present, the current setting of the error flag is displayed.

Exit
\\

End the K session.

200

Interrupt
<ctrl-C>

Interrupt execution of a running K application.

Invalid Values
\i [name]

A list of names of all global variables whose dependency definitions explicitly
refer to the global variable named in name , i.e. all global variables that depend
directly on the named global variable. If name is not present, a list of all currently
invalid names is displayed, i.e. all names whose dependency expressions will be
evaluated the next time they are referenced.

Load
\l file

The source code of applications and utilities is maintained in one or more files
called scripts. In order to run an application, its scripts must be loaded after a K
process is started. The effect of this command is to load the runtime program
file.kr, or if that file does not exist, the scriptfile.k .

Even though the current directory can be set in a script file and has the expected
effect on subsequent definitions in that file, once the load is complete the current
directory is automatically reset to the one when the load command was executed.

OS Command
\text

When the text following the back-slash is not the text of one of the other K com-
mands, it is passed along to the operating system for evaluation.

Print Precision
\p [digits]

Print precision is the maximum number of decimal digits that can appear in the
default format of a floating-point number. If digits is absent, the current value is
printed out. Otherwise, the print precision is reset to the value of that constant. The

K Reference Manual 12: Commands 201

default is 7, and the valid settings are the integers 0 through 19. If digits has any
other value then the setting is left unchanged and the current value is displayed. A
value of 0 indicates that all available digits should be used in the display.

Print Precision affects values typed by K in the session log and results of the primi-
tive monadic Format function.

Random Seed
\r [seed]

The random seed is the seed of the random number generator used, for example, in
the library functions Deal, Random Selection and Random Probability (see Draw
in the chapter System Functions). Its purpose is to permit multiple experiments to
be run on the same random sequence, by re-initializing the random sequence at the
beginning of each experiment, and optionally resetting the random seed. In the
absence of the constant signified by seed , the random sequence is re-initialized
with the current value of the random seed, which is printed out. Otherwise, the
random sequence is re-initialized with random seed reset to the value of that con-
stant, which must be an integer.

Runtime Program
\kr file

The scriptfile.k in the current OS directory is converted into a runtime
programfile.kr. Such programs are compiled and encoded K code, and may
be loaded into both the developer and runtime versions of K (see Load). Note that
unencoded scripts of the formfile.k may not be loaded into runtime K.

Set Timer
\t [digits]

Set the timer to the number of seconds given by the integer represented by digits,
or display the current setting ifdigits is not present. If the setting is a positive
integer n then the global variable .t is assigned the value of_t every n seconds;
a trigger on .t will then be executed every n seconds. No assignments of .t
occur if the setting is 0, the default.

202

Step
\s file

The script file.k is step-wise loaded line-by-line, using the Return key as the
load proceeds. The load may be aborted at any time by entering the back-slash
character\ (see Abort in the chapter Controls and Debugging).

System Names
_

This command causes a summary of the meanings of all system functions and
system variables to be displayed in the session log.

Time
\t expression

The execution time of the expression, in milliseconds, will be printed out when
execution completes.

 \t +/!10000
16
 \t do[100;+/!10000]
750

Verbs
\+

Online help for verbs.

Workspace Size
\w

Displays the space used, space allocated, and space allocated to mapped files.

K Reference Manual 203

CHAPTER 13

SYSTEM VARIABLES

System variables are special global variables whose meanings and values are deter-
mined by the K process. System variables are always available, and their names,
which all begin with underscore (_), never need to be qualified with path informa-
tion.

Three of the system variables are related to amending global variables. Whenever
a global variable is being amended the system variables _d , _v and _i are
automatically set to the directory of which the global variable is an entry, the entry
itself, and the indices of the items-at-depth being changed. These three values are
available within the function argument of Amend and Amend Item and the Update
and Validation Attributes.

Current Directory
_d

The value of _d , like the result of the command \d , is the current directory, i.e.
the directory in which relative names are resolved. The value is a symbol holding
the name of the directory, i.e. a handle. This value is automatically set to the direc-
tory whose entry is being modified by the current Amend or Amend Item.

Current Global Set
_v

The value of _v is a symbol holding the absolute name of the global variable
currently being modified by Amend or Amend Item.

204

Current Time
_t

The value is the current time, measured in seconds from some initial point, as a
nonnegative integer atom. The base time, i.e. _t is 0, is 12:00 AM, January 1, 2035.
See GMT Time Stamp, Local Time Stamp, Dates from Julian Days and Julian
Days from Dates in the chapter System Functions.

Host Process (Machine Name)
_h

The name of the machine (as a symbol atom) on which the current K process is
running.

Host Process (Port)
_p

The port number of the current K process, or 0 if no port was identified when the
process started.

Items Changed
_i

The value of _i is the atom or list of indices where the global variable named in
_v is currently being modified.

Message Source (Handle)
_w

The value of _w is the communication handle of the current message sent to this
process from another K process, or 0 if the source of the current message is the
console or screen.

Message Source (User)
_u

The value of _u is the name (as a symbol atom) of the user of the K process that
sent the current set message to this process, or ` if the source of the current mes-
sage is the console or screen.

K Reference Manual 13: System Variables 205

Nil Value
_n

The value of nil, which is the value of any unspecified list item. For example, the
first and third items of (; 1 2 3;) have values equal to nil.

Self Referent
_f

A recursive function is one whose definition refers to itself. A simple example is
the factorial functionfac[n] , whose value for a positive integer n is the product
of the first n positive integers. Since this product equals n*fac[n-1] , and since
fac[1] equals 1, fac can be defined by:

 fac: {:[x>1; x * fac[x-1]; 1]}

Functions are data and in particular, do not have to be named. A question that then
arises is: how is an unnamed function referred to in a recursive function expres-
sion? The answer is: with the self referent system variable _f. The factorial func-
tion can be redefined using _f by:

 {:[x>1; x * _f[x-1]; 1]}

Of course factorial can also be defined by fac:{*/ 1 + !x} .

206

K Reference Manual 207

CHAPTER 14

SYSTEM FUNCTIONS

System functions have names that begin with underscore (_). All system func-
tions are syntactically verbs. For example, applications of _in and _bin can be
expressed in infix notation, e.g. a _in b and a _bin b .

Binary Search
x _bin y
x _binl y

Arguments

In the case of_bin , the left argumentx is any list without duplicate items and
in ascending order, i.e. x is identical tox @ < x , and the right argument y is any
atom or list. In the case of_binl , both x and y can either be an integer vector
or floating-point vector, and otherwise x satisfies the other conditions of the left
argument of_bin .

Description

Find y in x using binary search.

Definition

The functionx _bin y is defined in the much the same way as same way as
x ? y , except that the restrictions on the left argument permit y to located in the
intervals (x[i-1], x[i]) , and not just identical to an item of x. Consequently,
the result is the largest index i for which the list (x[i-1]; y; x[i]) is in sort
order, i.e. if <(x[i-1]; y; x[i]) is 0 1 2 . Otherwise, the result is 0 if
(y; *x) is in sort order, and#x if (*|x; y) is in sort order.

208

The restrictions on the left argument are required by the binary search algorithm
used in this function, which is more efficient than the general search algorithm
used in Find. For the sake of efficiency the restrictions are assumed to apply; the
function does not verify them. Consequently, the function will not fail if the restric-
tions do not apply, but the result will be meaningless.

x _binl y is equivalent to x _bin/: y wherever it is defined.

Error Reports

Rank Error if x is an atom.

K Reference Manual 14: System Functions 209

Delete Indices
x _di y

Arguments

Either the left argument x is a list and the right argument y is integer, or the left
argument is a dictionary and the right argument is a symbol atom or vector.

Description

Delete itemsx[y] from x.

Definition

The result ofx _di y for a list x is x with itemsx[y] deleted. For example:

 "abcdefghi" _di 3 1 5
"aceghi"

In the case of a dictionary x, the result is x with the entry or entries named in y
deleted. For example:

 \d
.k
 a:2; b:3; c:"abc"; d:7 8
 .k _di `a `c
.((`b;3;)
 (`d
 7 8
))

If y is a vector of entry names (e.g.y:!x), usex _di y to delete them all.

Error Reports

Index Error if an atom in the right argument is not a valid index of the left argu-
ment.

Rank Error if x is not a list or dictionary.

210

Delete Value / Delete Value List
x _dv y
x _dvl y

Arguments

In the case of _dv , the right argument y is any list or atom, while for _dvl the
right argument must be a list. In either case the left argument x is a list and the
result is a list whose count does not exceed#x .

Definition

The result ofx _dv y is x with any items that match y deleted. Since Match is
used, floating-point comparisons are subject to comparison tolerance.

For example:

 3 5 1 7 _dv 5 3 5 1 7 _dv 1 5
3 1 7 3 5 1 7

In the example on the right, the list1 5 is not an item of the list3 5 1 7 , so
nothing is deleted. The functionx _dvl y is like x _dv y , except that every
item of y, not y itself, is deleted from x. That is, x _dvl y is equivalent to
x _dv/ y . For example:

 3 5 1 7 _dvl 1 5
3 7

Error Reports

Rank Error if x is not a list.

K Reference Manual 14: System Functions 211

Draw
x _draw y

Description

Make x random selections from !y with replacement if y is positive, from !-y
without replacement if y is negative, or from the interval (0,1) if y is 0.

Arguments

The left argument x is a nonnegative integer atom or vector and the right argument
y is an integer atom. If y is negative then*/x is less than or equal to -y.

Definition

Assume for now that x is an integer. If y is positive the result is an integer list of
count x whose items are integers randomly selected from !y . This function is
sometimes called Random Selection. For example:

 5 _draw 3 5 _draw 7
1 2 2 0 2 4 5 4 6 4

If y is negative the result is an integer list of count x whose items are distinct
integers randomly selected from !-y . This function is sometimes called Deal, and
since the items of the result are distinct, x must be less than or equal to -y . For
example:

 4 _draw -9 9 _draw -9
3 5 0 4 5 4 7 0 2 3 6 8 1

If y is 0 the result is a floating-point vector of count x whose items are distinct
numbers greater than or equal to 0 and less than 1, chosen from a uniform or rect-
angular distribution. This function is sometimes called Random Probability.

 6 _draw 0
0.3655 0.2888 0.2184 0.8171 0.693 0.6323

If x is a vector thenx _draw y is identical to x # (*/x) _draw y in all
cases.

Error Reports

Length Error if y is negative and */x is greater than -y .

212

GMT Time / Local Time
_gtime x
_ltime x

Argument

The argument is an integer atom and the result is a two-item integer vector.

Description

Time from seconds.

Definition

Give the time produced by the current time system variable _t as a two-item inte-
ger vector, where the first item is yyyymmdd and the second is hhmmss. _gtime
gives GMT and _ltime gives local time. For example:

 _gtime _t _ltime _t
19951001 50000 19951001 0
 _gtime 0
20350101 0

The argument does not have to be _t , but must represent time duration in seconds
starting at the same point in time as _t .

Error Reports

Type Error if the argument x is not an integer atom.

K Reference Manual 14: System Functions 213

Integer from Character / Character from Integer
_ic x and _ci x

Argument

In the case of _ic, the argument is character, while for _ci the argument is inte-
ger. The result is identical in structure to the argument, but is integer when the
argument is character and character when the argument is integer.

Definition

Both _ic and _ci are atom functions. In the case of _ic, the result is just like the
argument except that every character atom in the argument is replaced by its ASCII
integer value in the result. In the case of _ci, every integer atom in the argument
becomes the character in the result whose ASCII value is that integer modulo 256
(i.e., x ! 256).

Error Reports

Type Error if the argument of _ic is not character or the argument of _ci is not
integer.

214

Julian Day from Date / Date from Julian Day
_jd x
_dj x

Argument

The argument and result are integer atoms.

Definition

_jd gives a Julian day count for an integer argument of the form yyyymmdd, such
as the first item of the result of either _gtime or _ltime , and _dj produces a
date from a Julian day count.

These functions are compatible with _t , i.e.:

 _dj 0
20350101

In particular, since this date is a Monday, the day of the week for any time _t is:

 `Mon`Tues`Wed`Thur`Fri`Sat`Sun @ (_ _t%86400)!7

Error Reports

Type Error if the argument is not an integer atom.

K Reference Manual 14: System Functions 215

Least Squares
x _lsq y

Description

The least squares solution w of the linear equations (in conventional mathematical
notation) yw = x .

Arguments

The argument x is a floating-point vector or matrix and y is a floating-point matrix.
Since y is a floating-point matrix all its items are floating-point vectors of the same
count. That count must equal the count of a vector x or the count of every item of a
matrix x, and cannot be less than the count of y. Also, the matrix y must be non-
singular, i.e. the items must be linearly independent.

Definition

The items of y are considered to be the columns of the matrix. Consequently, for
any vector w of count equal to the count of y, the matrix-vector product yw is +/
y*w . If w is a solution of the above equation then +/y*w equals x, or equiva-
lently, the items of the vectorx - +/y*w are all 0.0 (in practice, they are
approximately 0.0). If w is not a solution, then

 +/(x - +/y*w)*2

is called the sum-of-squares measure of how close w is to a solution.

The equation may not have a solution when each column of y has more items than
y itself. However, if the matrix is non-singular, then there is a unique w for which
the sum of squares has the smallest possible value. That w isx _lsq y .

Note that if the equation has a solution then it is x _lsq y . For example:

 y: (1 1 1.0;1 2 4.0)
 x: 1 2 3.0
 w: x _lsq y
 w
0.5 0.6428571
 +/y*w
1.142857 1.785714 3.071428

The vector w is not a solution, but is the least-squares solution.

216

x _lsq y is identical to x _lsq\: y for a matrix x.

Error Reports

Domain Error if the matrix y is singular.

Type Error if either argument is not floating-point.

K Reference Manual 14: System Functions 217

Math Functions
_abs x to _tanh x

Argument

The argument of every math function is numeric.

Definitions

Every math function is an atomic function. They are:

_abs x absolute value function, or magnitude function
_arccos x inverse cosine function
_arcsin x inverse sine function
_arctan x inverse tangent function
_cos x trigonometric cosine function
_cosh x hyperbolic cosine function
_exp x exponential function ex

_floor x the integer part of x as a floating-point whole number.
(This function does not use Comparison Tolerance. Compare with _ x .)
_log x natural logarithm function
_sin x trigonometric sine function
_sinh x hyperbolic sine function
_sqr x x-squared, i.e. x^2.0
_sqrt x square root function
_tan x trigonometric tangent function
_tanh x hyperbolic tangent function

The result of any math function is a floating-point atom or list.

Error Reports

Type Error if an atom argument x is not numeric.

Domain Error if an atom argument x is not in the domain of the function.

218

Matrix Functions
x _dot y
x _mul y
_inv x

Arguments

For the first function, x and y are conformable numeric lists. For the next two, they
are numeric matrices. (Some other numeric structures are legal, but of limited prac-
tical use.)

Definition

The first function is dot product, the second is matrix multiply, and the third is
matrix inverse. Dot product is simply the function +/*. Matrix multiply is the
function {x _dot\: y}. Matrix inverse uses the system function _lsq to find
the inverse of a square matrix. For example:

 2 3 4 _dot 9 8 -2
34
 A: (2 3 4; 1 2 3; 0 2 1)
 B: (1 2; 5 -2; 3 4)
 A _mul B
(29 14
 20 10
 13 0)
 _inv A
(1.333333 -1.666667 -0.3333333
 0.3333333 -0.6666667 0.6666667
 -0.6666667 1.333333 -0.3333333)

Inverting a singular matrix results in a matrix filled with 0n values.

Error Reports

Type Error if arguments are non-numeric, or if the argument for _inv is not a
matrix.

Length Error if the arguments for _dot do not conform, or if the arguments for
_mul to not conform along the inner dimension. Also, length error if the argument
for _inv is not a square matrix.

K Reference Manual 14: System Functions 219

Membership / List Membership
x _in y
x _lin y

Arguments

In the case of_in , the left argument x is any list or atom and the result is an
integer atom, while for _lin the left argument must be a list and the result is an
integer list of the same count. In either case the right argument y is a list.

Description

Is x in y?

Definition

The result of_in is 1 is if x matches any item of y, and 0 otherwise. Since Match
is used, floating-point comparisons are subject to comparison tolerance.

For example:

 5 _in 3 5 1 7
1
 9 _in 3 5 1 7
0

This function is similar to Find. Namely, x _in y is (y ? x) < # y .

The result of_lin is an integer list whose ith item is 1 ifx[i] matches any
item of y, and 0 otherwise. That is,_lin applies_in to every item on the left
and is equivalent tox _in\: y. For example:

 5 9 _lin 3 5 1 7
1 0

Error Reports

Domain Error if y is not a list.

220

Scalar from Vector
x _sv y

Arguments and Result

The left argument x is either a positive integer atom or vector, while the right
argument y is integer and if a list, its items must be conformable in the manner
described below. If both arguments are lists they must have the same count. The
result is integer.

Description

Evaluate y in the radices x.

Definition

Scalar from Vector computes the base value of a vector y in a number system with
radices x. An atom x paired with a list y is treated like (#y)#x .

 10 _sv 1 9 9 5
1995
 2 _sv 1 0 0 1
9
 24 60 60 _sv 1 3 25
3805

If the right argument is a matrix then the result ofx _sv y is a vector with# * y
items whose ith item (x _sv y)[i] is identical tox _sv y[;i] . The gen-
eral case can be seen from the following definition of this function, which is based
on the polynomial evaluation method called Horner’s method, and which for an
integer vector left argument is:

 sv: {{z + y * x}/[0; x; y]}

The function {z + y * x} is atomic, and its first application in an evaluation
of _sv is:

 t1: {z + y * x}[0; x[0]; y[0]]

Since 0 and x[0] are atoms the result t1 is identical to y[0] in structure. The
next application is:

 t2: {(z + y * x}[t1; x[1]; y[1]]

K Reference Manual 14: System Functions 221

Since x[1] is an atom,t1 and y[1] must be conformable, and thereforey[0]
and y[1] must be conformable. And so on. The items of y must be conformable
so that, for example, any Over for dyadic f applied to y, such as +/y , is defined.

Error Reports

Domain Error if the left argument x is integer but not positive.

Length error if the arguments are both lists but their counts are different.

Type Error if either argument is not integer.

222

String Match
x _sm y

Arguments and Result

The left argument x is a symbol, string, or list of symbols and/or strings. The right
argument y is similar. The result is a boolean list.

Description

Indicate whether a string in x matches one in y.

Definition

String Match is a string-atomic function that yields a 1 wherever a string in x matches
one in y, and 0 otherwise. Special wild-card characters may appear in strings of y:

 * one or more: "b*t" matches "bet" and "beat" and "beast"

 ? one: "b?t" matches "bat" and "bet" and "bit"

 [�] one of: "a[cr]t" matches "act" and "art"

^ none of: "ab[^bc]" matches "abd" but not "abb" nor "abc"

- range: "[0-2]4" matches "04" and "14" and "24"

The literal value of a wild-card character is specified by enclosing it in brackets,
e.g. [^]. Some examples:

 files: ("a.c";"foo.h";"bc")
 files _sm "*.[ch]"
1 1 0
 `one `two `three `four _sm "two"
0 1 0 0
 (`one;"one") _sm (("on[^a-z]"; `b); ,"one")
(0 0
 ,1)

Error Reports

Type Error if x or y is not as described.

Length error if the arguments are both lists but their counts (down to string-atomic-
ity) are different.

K Reference Manual 14: System Functions 223

String Search
x _ss y

Arguments and Result

The left argument is a character string or string list, and the right argument is a
string, symbol, or list of strings and/or symbols. The result is a list of nonnegative
integers.

Description

Find all occurrences of strings of y in strings of x.

Definition

Like String Match, String Search is a string-atomic function (see String-Atomic
Function). If x and y are character strings, then each item in the resulting integer
vector is the first index of a unique occurrence of the string y in the string x. That is,
if r: y _ss x then for every index i of r:

 y ~ x[i+!#y]

Matching substrings may not overlap. For example:

 x:"Mississippi"
 x _ss "issi"
,1
 x _ss "iss"
1 4
 x[1+0 1 2 3]
"issi"

If y is not a substring of x, the result is the empty integer vector !0.

Wild-card characters defined for String Match are permissible in y, with the excep-
tion of *. When the right argument y is a symbol, it is treated as a word; that is, a
sequence of characters surrounded by non-alphanumerics. For example:

 x:"Extract 15 words out of 1015."
 x _ss `"15"
,8

224

Error Reports

Type Error if the argument types are not as described above.

Length Error if the arguments do not conform (see String-Atomic Function), or if y
(or an item of y) is the empty string "".

K Reference Manual 14: System Functions 225

String Search and Replace
_ssr[x;y;z]

Arguments and Result

The first argument x is a character string, and the second argument y is a string,
symbol, or character. The third argument z may be an atom, string, or monad. The
result is a string.

Description

Find all occurrences of y in string x, and replace with z.

Definition

Each occurrence of the substring y in the character string x is replaced with the
value of z. For example:

 s:"Adam had a pear"
 _ssr[s;"a";"the"]
"Adthem hthed the pether" / replace substrings
 _ssr[s;`a;"the"]
"Adam had the pear" / replace word

The result is identical to x if y is not a substring of x.

All wild-card characters permitted for String Search are also valid here.

Error Reports

Type Error if either argument is not a character string.

226

Vector from Scalar
x _vs y

Arguments

The left argument x is either a positive integer atom or vector, while the right
argument y is an integer atom or list of integers. The result is a list of integers.

Description

Expand y in the radices x.

Definition

Vector from Scalar computes the base representation of y in radices x. For ex-
ample:

 10 _vs 1995
1 9 9 5
 2 _vs 9
1 0 0 1
 24 60 60 _vs 3805
1 3 25

If the right argument is an integer vector then the result ofx _vs y is a matrix
with #x items whose ith column (x _vs y)[;i] is identical tox _vs y[i].
More generally, the right argument y can be any list of integers, and each item of
the result is identical to y in structure. For example:

 a: 10 _vs 1995 1996 1997
 a
(1 1 1
 9 9 9
 9 9 9
 5 6 7)

 a[;0]
1 9 9 5

K Reference Manual 14: System Functions 227

 10 _vs (1995; 1996 1997)
((1
 1 1)
 (9
 9 9)
 (9
 9 9)
 (5
 6 7))

vs:{|(-1 _ i)-c*1 _ i:y (_%)\ c:|x}

Error Reports

Domain Error if the left argument is integer but not positive.

Type Error if either argument is not integer.

228

K Reference Manual 229

CHAPTER 15

SCREEN DISPLAYS

Every global variable can be displayed on the screen simply by saying “show it”, as
in:

 `show $ `x

for the global variable x. A variable and its screen display are tightly coupled;
when the displayed value is edited the value of the variable changes automatically,
and when the variable is amended in the workspace the screen display changes
accordingly. Consequently, when the screen is edited, a global variable automati-
cally changes value, its trigger – if it has one – fires immediately, and any other
global variables dependent on it are marked invalid (and automatically re-evalu-
ated if displayed on the screen, thereby keeping the screen view consistent). In this
way the basic interactions with users are handled simply and automatically.

The display of a global variable is removed from the screen by saying “hide it”, as
in:

 `hide $ `x

Usually, both ̀ show$ and ̀ hide$ are applied to handles, in which case their
result is nil. If either monad is applied to an expression, a variable is created for it
and its handle returned. These are named `s0 ̀ s1 ̀ s2 … , and should be consid-
ered reserved names since they are used in the given order regardless of any previ-
ous assigned value.

230

Data Presentation

Every atomic K data type has a default display. Examples are shown in the follow-
ing figure. They were created as follows:

 \d .atoms
 int: 1264
 float: 1.2391
 char: "XYZ"
 symbol: `xyz
 function: {x + y}
 `show$' `int`float`char`symbol`function`.atoms
(;;;;;)

Note that character strings are atomic for screen displays, rather than just character
atoms. There are also default displays for integer, floating-point and symbol vec-
tors, lists of character vectors and functions, and dictionaries whose entries have
these types of values. In all cases the displays are column-oriented, i.e. items dis-
play as columns. For example, for dictionaries:

 \d .k.lists
 li: 10 23 45231 95
 lf: 1.2 45.768 -12.34 0.123

K Reference Manual 15: Screen Displays 231

 lc: ("XYZ"; "ship"; "boat"; "canoe")
 ls: `xyz `car `truck `train
 lu: (+; {x + y}; -; {x - y})
 \d ^
 `show $ `lists

The independent displays of the entries in this dictionary are also column-oriented
and look much like the above display, except that they have no column titles.

Finally, there are default displays for matrices of the basic types. Executing the
following results in the display shown below on the left:

 intmat: 0 5 8 12 18 20 23 _ ! 23
 `show $ `intmat

232

Note that the items of intmat are the columns of the display. The columns show the
application of a default formatting function, as can be seen from the third column
where the entries with more than one digit (10 and 11) are not shown. The default
formatting can be overridden by setting the Format attribute. For example, evaluat-
ing the following line will cause the display to change to the one shown above on
the right:

 intmat..f: 2 $

Display Classes

The display class of a variable can be specified with the Class attribute. The default
display class is ̀data , and all the displays discussed in the previous section are of
that class. There are also `chart and ̀ plot , `check and ̀ radio , and
`button . Finally, the entries of dictionaries of class `form can be arranged in
a variety of ways on the screen. (See Arrangement in the chapter Attributes.)

Both the chart and plot classes are for graphs. A numeric vector y can be displayed
as a chart, and is plotted vertically against the horizontal coordinates !#y . A nu-
meric matrix can also be displayed as a chart, in which case each (vector) item
y[i] is plotted against !#y[i] .

The plot class is like chart, except that coordinate pairs must be supplied. The
simplest case is a two-item numeric matrix xy whose items have the same count,
in which case xy[1] is plotted vertically against horizontal xy[0]. A list of such
two-item lists will produce a set of independent traces on the same graph.

An integer atom whose value is 0 or 1 can be displayed as a check button, and a
dictionary whose entries are all atoms with values 0 or 1, and whose display classes
are all ̀ check , will display a series of check buttons. For example:

 chk:.+(`a`b`c`d;0 1 1 0)
 chk[.;`c]:`check
 `show $ `chk

Since the check buttons are held in a dictionary they can be arranged in many
different ways simply by setting the arrangement attribute on the dictionary. Note
that the class of the dictionary is automatically a form because the class of its
entries was explicitly set (to `check).

K Reference Manual 15: Screen Displays 233

The radio class uses the option list attribute in its display. If a variable is of class
`radio , then its .o attribute must be a symbol vector, and its initial value must
be one of these symbols. For example, the following code results in the display
shown above on the right:

 rad..o: `zero`one`two`three`four`five
 rad: rad..o[2]
 rad..c: `radio
 `show $ `rad

See also Option List in the chapter Attributes for a description of the radio class.

Finally, any character vector can be displayed as a button. The contents of the
character vector must be a valid K expression or sequence of expressions, which
will be executed whenever the button is pressed.

A dictionary whose entries are valid buttons can be made into a pulldown menu.
For example, the following code will generate a pulldown menu with three items:

 b.x: "2+3"
 b.y: "5-2"
 b.z: "8*!3"
 b..c: `button
 `show $ `b

234

Now put the mouse cursor on the button b and press and hold the left mouse button.
A display of the buttons x, y and z will appear, as shown in the center of the above
figure. While still holding the left mouse button, move the mouse cursor to the
button x and release the button. The expression 2+3 will be executed and 5 will
appear in your session log. Note that `button is the class of the dictionary, but
not necessarily the class of the entries.

K Reference Manual 235

INDEX

Symbols

! dyad 110
! monad 37, 66
dyad 114
monad 61
$ dyad 74, 76
$ monad 73
% dyad 62
% monad 108
& dyad 99
& monad 120
'. See quote
() notation 20
* dyad 117
* monad 69
* wild-card 222
*| 69, 109
+ dyad 105
+ monad 70
, dyad 93
, monad 65
- dyad 100
- monad 103
-h option 196
-i option 195
. dyad 88
. monad 96, 118
. tetrad 51
. triad 50, 54
.. 159

.a attribute 160

.bg attribute 161

.c attribute 162

.d attribute 162

.e attribute 163

.f attribute 163

.fg attribute 161

.g attribute 165

.h attribute 163

.k attribute 162

.k directory 40, 199

.K file 181, 184

.k file 200, 202

.kk attribute 162

.l attribute 164

.L file 181, 184

.m directory 195

.m.c 195

.m.g 191, 195

.m.h 196

.m.s 188, 195

.m.u 195

.o attribute 164, 233

.t attribute 164

.t variable 201

.u attribute 164

.x attribute 166

.y attribute 166
/

Comment 172
Over Dyad 130

Over Monad 135
,// 136
/: 128
/[] Over 133
': 127
:

Amend 142
Conditional 167
monadic case 122
Resume 172
Return 173

:: 142
< dyad 94
< monad 83
= dyad 67
= monad 84
> dyad 101
> monad 80
? dyad

Find 68
Inverse 78

? monad 84, 107
? triad 78
? wild-card 222
?/: 128
@ dyad

Apply 57
At 86
Execute 118

@ Error Trap 57
@ monad 60

236

@ tetrad 47
[]

Apply 146
Index 149
wild-card 222

[]:
Amend 144
Item Amend 150

\
Abort 171
command 198, 200
Scan 138
Scan Dyad 137
Stop / Trace 175

\: 125
\\ 199
_ 202
\b 175, 198
\c 198
\d 198
\e 199. See also error flag
\i 200
\l 200
\p 200
\r 201
\s 202
\t 201, 202
\v 199
\w 202
^ dyad 106
^ monad 112
^C 200
_ dyad 63
_ monad 72
_ notation 203, 207
_abs 217
_bin 207
_binl 207
_ci 213
_cos 217
_d 203
_di 209
_dj 214
_dot 218
_draw 211

_dv 210
_dvl 210
_exp 217
_f 205
_floor 217
_gtime 212
_h 204
_i 162, 204
_ic 213
_in 125, 219
_in\: 125
_inv 218
_jd 214
_lin 219
_log 217
_lsq 215, 218
_ltime 212
_mul 218
_n 205. See also nil
_p 204
_sin 217
_sm 222
_sqr 217
_sqrt 217
_ss 223
_ssr 225
_sv 220
_t 204
_tan 217
_u 204
_v 162, 203
_vs 161, 226
_w 204
`hide 229
`radio 233
`show 229
{} 155
| dyad 98
| monad 109
|/ 36
~ dyad 97
~ monad 104
0: dyad 177, 179
0: monad 177
0I 95, 102

0i 62
1: dyad 181, 182
1: monad 181
2: dyad 185
2: monad 184
3: dyad 188
3: monad 186, 187
4: dyad 191
4: monad 190
5: dyad 194
5: monad 193

A

Abort 171
absolute name 23
absolute path 40
absolute reference 118, 157
Accumulate 56
Accumulate Item 50
active directory 41
adverb 18, 26, 121
adverb composition 24
Amend 39, 51, 142, 144
Amend Each 56
Amend Entire 56
Amend Item 47
And 99
application 200
application script 199
Apply 58, 146

error trap 59
Apply Monad 153
approximation 78
argument list 20, 155
argument notation 20
arrangement attribute 160
ASCII 17
Assign 142
assignment 22
asynchronous communication

188
At 86
Atom 30, 60
atom 29

K Reference Manual Index 237

atom function 29
atomic 31
atomic function 29
attribute 15, 159

verb 104
attribute dictionary 20, 23, 96,

159
Attributes command 197
authorization vector 195
authorized user 196

B

back-quote.See ̀
back-slash 19, 200
back-slash character 38
background attribute 161
binary search 207
Binary Search function 207
boolean 131, 199
bracket-semicolon notation 20,

21, 41, 58, 141
Break Flag command 198
broken connection 195
button 162, 232

radio 164
‘button 233
button class 162, 233

C

C language 11, 182
character constant 32
character dimensions 166
Character from Integer function

213
character string 32
character vector 32
‘chart 232
chart class 162, 232
‘check 232
check class 162, 232
class attribute 162
click attribute 162
Close Handle 187
closed connection callback 195

colon 22
color 161
column 230
column title 231
command 27, 197

OS (operating system) 200
Commands command 198
comment 26, 27, 172
communication 177
Communication Handle 186
communication handle 204
communication partner 186
comparison tolerance 32, 33,

67, 72, 94, 97, 101, 136,
210, 219

compilation 185
compile 201
compound expression 22
compound name 23
conditional evaluation 21, 167
conform 34
conformable 31
conformable object 33
conformable vector 34
console 35

command 197
Console Flag 198
control statement 21
control-C 200
controls 171
coordinate 232
Copy K Data 184
cosine function 217
Count 61
cross-sectional index 89
current directory 41, 199, 200
Current Directory variable 203
Current Global Set variable 203
Current Time variable 204
cursor 162, 234
Cut 63
cycle 162

D

data class 162, 232
data type

K 185
Date from Julian Day function

214
Deal 201
Deal function 211
debug 27, 171, 199
default

display 230
default arguments 155
default directory 41
default display class 162
default error behavior 199
default print precision 201
default value 159
Delete Indices function 209
Delete Value function 210
dependencies 12
dependency 35, 200
dependency attribute 162
depth 36
derived function 121
derived verb 18
development cycle 11
dictionary 37, 41, 91, 96

attribute 159
difference 100
digit 200
directory 91, 198

attribute 104
Directory command 198
Directory Entries command 199
display 229
Divide 62
Do 135
Do statement 168
Do with trace 139
dot 23, 88, 96, 119
dot product 218
dot-dot 159
double click attribute 162
double colon 158

238

double-quote character 38
Draw function 211
Drop 63
duplicate items 81
dyad 19, 30, 37
dyadic function.See dyad
dynamic load 14

E

Each 33, 122
Each Left 125
Each Pair 127
Each Right 128, 156
editable attribute 163
empty character vector 37
empty expression 22
empty list 20, 37, 97
encode 201
Enlist 20, 65
entry 37
Enumerate 66
enumeration 37
Equal 67
Error Flag command 199
Error Trap 59
Error Trap (Monadic) 57
escape sequence 38
evaluation 24
event 162
Executable Form 193
Execute 118, 119, 148, 197
execution monitor 175
execution time 202
Exit command 199
exponential notation 18
exponentiation 106

F

factorial function 205
field 179, 182
fields 12
Find 68, 208
Find Each Right 128
First 69

First Reverse 69
First-Reverse 109
five-colon. See 5:
fixed function argument 156
fixed left argument 24
Flip 70
floating-point

number 18
floating-point number 200
floating-point vector 38
Floor 72
font 166
foreground attribute 161
Form 76
form. See also notation

size 166
form class 162, 232
formal parameter 185
Format 73
Format (Dyadic) 74
Format attribute 232
format attribute 163
Fortran 14
four-colon. See 4:
function 18, 21, 155

external 185
function atom 38
function composition 23
Function Inverse 78

G

get message 191
filter 195

global assignment 22
global dictionary 37
global variable 35, 40, 158,

200, 203
GMT Time function 212
Grade Down 80
Grade Up 83
graph 232
graphical user interface 12
Group 84

H

h
connection filter 196

handle 39, 92, 104, 158
communication 186, 187

Handle variable 204
height attribute 166
help attribute 163
hide 229
hierarchy 15
homogeneous list 12, 39
Horner's method 220
host 197
Host Process variable 204

I

I/O 22
identical 97
identity function 63
If statement 169
immediate verb use 23
In Each Left 125
incomplete expression 25
Index 88, 149
index 20
Index All 92
Index Item 49, 86
infinity 18, 62, 95, 102, 106
infix notation 207
Integer from Character function

213
integer vector 39
interface 185
Internal Data Type 190
internet protocol 186
interprocess communication 14,

22, 177, 195
invalid name 200
Invalid Values command 200
inverse function 78
IP address 186
item 40
item-at-depth 40

K Reference Manual Index 239

Items Changed varaible 204
iteration 135, 139

trace 138

J

Join 93
Julian Day from Date function

214

K

K User Manual 15, 166, 185,
186, 195, 196

K-tree 15, 23, 40

L

label attribute 164
last 69, 109
Least Squares function 215
left mouse button 162, 234
left to right evaluation 25
left-atomic function 41
left-to-right 168, 170
Less 94
lexicographic order 94, 101
Link Object Code 185
list 41

argument 20
indices 20
one-item 18

List Membership function 219
list notation 20
listening port 196
load

step 202
Load Binary File 182
Load command 200
Load File 177
Load K Data 181
Load Text File as Fields 179
local function 158
Local Time function 212
localization 157
logarithm function 217

logical And 99
logical negation 104
logical Or 98

M

Machine Name variable 204
magnitude function 217
Make Dictionary 37, 96
mapped file 184, 202
Match 68, 97, 210
math function 217
matrix 215

display 231
matrix inverse 218
matrix multiply 218
matrix transpose 70
Max 98
Max-Over 36
Maximum 131

general form 136
Membership function 219
memory mapping 184
menu 233
message 195
message filter 188, 191, 195
Message Source variable 204
Min 99
Minimum 131

general form 136
minimum

width and height 166
Minus 100
minus 27
Mod 110
modify 142
modify, verb 122
module 185
monad 24, 41
monadic case 23, 24, 26, 122
monadic function 19
monitor 195
More 101
mouse 234
mouse button 162

multiply 117

N

Negate 29, 103
Negation

logical 104
new-line character 38
nil 18, 41, 68
Nil variable 205
nilad 20, 42
niladic function 58
Not 104
not-a-number 18
notation

bracket-semicolon 41, 58
null 18
number 18
numeric list 42

O

object code 185
octal number 38
Of 88
one-colon.See 1:
one-item list 18, 20, 65
Onto 157
operand 121
operating system 185, 200
operating system command 191
operator.See adverb
Option List attibute 233
option list attribute 164
Or 98
order 207
order of evaluation 24
OS. See operating system
Over 55, 133
Over Dyad 130
Over Monad 135

P

padding 180
partition 63

240

partner
communication 186

permutation 80
‘plot 232
plot class 162, 232
Plus 31, 105
Plus-Over 121
polynomial evaluation 220
port 186, 195
Port variable 204
Power 106
precedence 24
prefix 19
primitive attribute 159
primitive function 42
print precision 32, 200
Print Precision command 200
process 15, 204
programming language 185
projection 146, 156
pulldown menu 233

Q

quote 19, 122, 173

R

radio class 162, 164, 233
radix 220, 226
Random Integer 201
Random Probability 201
Random Probability function

211
random seed 201
Random Seed command 201
Random Selection function 211
Range 107
rank 42
Reciprocal 108
rectangular list 43
recursive function 205
referent 157
relational database 11
relational table 12
relative name 23

relative referent 157
remainder 110
Remote Get 191
Remote Set 188
replace 225
Reshape 114, 115
residue 161.See also Mod
Resume 172
Return 173
Reverse 109
RGB 161
right-atomic function 31, 43, 86
root directory 41
Rotate 110
runtime program 201

S

Save File 177
Save K Data 181, 184
Scalar from Vector function

220
scale 13
Scan 138
Scan Dyad 137
Scan Monad 139
screen display 229
script 43, 200, 201, 202
script file 193
scroll 14
search and replace 225
Secant 78
Self Referent variable 205
server 195
session log 201
set message 188

filter 195
Set Timer command 201
Shape 112
show 229
side effect 164
Signal 173
signal 199
simple verb 42
sine function 217

singular matrix 218
sort 14
sort order 207
space 26

used and allocated 202
spreadsheet 12
spreadsheets 11
square matrix 218
Step command 202
Stop 175, 198
String Match function 222
String Search function 223
string-atomic 230
subdirectory 41
sum 121
sum-of-squares 215
Sun 14
suspended execution 59, 171,

199
symbol 44
symbolic indexing 91
Synchronized File Append 194
synchronous communication

191
synchronous connection filter

196
syntax 17
system function 207
system name 23
System Names command 202
system parameter 197
system variable 203

T

tab character 38
table

database 12
Take 114
tangent function 217
tetrad 156
three-colon.See 3:
Time command 202
timer 201
Times 117, 118

K Reference Manual Index 241

tolerance 78.See also com-
parison tolerance

tolerantly equal 33
top-level item 40
Trace 175, 198
transpose 70
trigger 45, 229
trigger attribute 164
two-colon. See 2:
type 190

U

underscore 23, 203, 207
Unmake Dictionary 96
unspecified arguments 146
update 194
update attribute 164
User Manual.See K User

Manual
User variable 204
utility script 198, 200

V

valence 45, 122, 138, 146, 185
validation attribute 165
Value 118, 119
variable

global. See global variable
vector 45

floating-point 38
integer 39

Vector from Scalar function
226

vector notation 22, 46
verb 207
verb modification.See adverb
view 229

W

Where 120
While 136

with trace 140
While statement 170

width attribute 166
wild-card 222
Workspace Size command 202

242

	K REFERENCE MANUAL - title page
	 Table of Contents
	 1: INTRODUCTION
	What is K?
	Dependencies and Data Bases
	The Language
	Graphical User Interface
	Connectivity
	Component Management
	About this manual

	 2: SYNTAX
	Nouns
	Verbs
	Adverbs
	List Notation
	Index and Argument Notation
	Conditional Evaluation and Control Statements
	Function Notation
	Juxtaposition and Vector Notation
	Compound Expressions
	Empty Expressions
	Colon
	Names
	Function Composition
	Adverb Composition
	Fixing the Left Argument of the Dyad of a Verb
	Precedence and Order of Evaluation
	Incomplete Expressions
	Spaces
	Special Constructs

	 3: TERMINOLOGY
	A-E
	Atoms
	Atom Functions
	Character Constant
	Character String
	Character Vector
	Comparison Tolerance
	Conformable Data Objects
	Console
	Dependencies
	Dependent Variables
	Depth
	Dictionary
	Dyad
	Empty List
	Entry
	Escape Sequence

	F-N
	Floating-Point Vector
	Function Atom
	Handle
	Homogeneous List
	Integer Vector
	Item
	K-Tree
	Left-Atomic Function
	List
	Matrix
	Monad
	Nil
	Nilad
	Numeric List
	Numeric Vector

	P-W
	Primitive Function
	Rank
	Rectangular List
	Right-Atomic Function
	Script
	Simple List
	Simple Vector
	String
	String-Atomic Function
	String Vector
	Symbol
	Symbol Vector
	Trigger
	Valence
	Vector
	Vector Notation

	 4: VERBS
	A-F
	Amend Item
	Amend
	Apply (Monadic)
	Apply
	Atom
	Count
	Divide
	Drop / Cut
	Enlist
	Enumerate
	Equal
	Find
	First
	Flip
	Floor
	Format
	Format (Dyadic)
	Form
	Function Inverse

	G-N
	Grade Down
	Grade Up
	Group
	Index Item, or At
	Index, or Of
	Join
	Less
	Make / Unmake Dictionary
	Match
	Max / Or
	Min / And
	Minus
	More
	Negate
	Not / Attribute

	P-W
	Plus
	Power
	Range
	Reciprocal
	Reverse
	Rotate / Mod
	Shape
	Take / Reshape
	Times
	Value / Execute
	Where

	 5: ADVERBS
	Each
	Each Left
	Each Pair
	Each Right
	Over Dyad
	Over
	Over Monad
	Scan Dyad
	Scan
	Scan Monad

	 6: AMEND, INDEX, APPLY & ASSIGN
	Amend
	Amend
	Apply
	Execute
	Index
	Item Amend
	Item Index
	Apply Monad

	 7: FUNCTIONS
	Projection; Fixing Function Arguments
	Localization
	Local Functions

	 8: ATTRIBUTES
	Arrangement
	Background Color / Foreground Color
	Class
	Click / Double Click
	Dependency
	Editable
	Format
	Help
	Label
	Option List
	Trigger
	Update
	Validation
	Width / Height

	 9: CONDITIONALS
	Conditional Evaluation
	Do
	If
	While

	 10: CONTROLS AND DEBUGGING
	Abort
	Comment
	Resume
	Return
	Signal
	Stop / Trace

	 11: I/O AND COMMUNICATION
	Load / Save Text File
	Load Text File as Fields
	Load/Save K Data as K Files
	Load Binary File as Fields
	Copy K Data from K File
	Link Object Code
	Communication Handle
	Close Handle
	Remote Set
	Internal Data Type
	Remote Get
	Executable Form
	Synchronized File Append
	Interprocess Communication

	 12: COMMANDS
	A-I
	Adverbs
	Assignment, Functions, Control
	Attributes
	Break Flag
	Commands
	Console Flag
	Data and I/O Verbs
	Directory
	Directory Entries
	Error Flag
	Exit
	Interrupt
	Invalid Values

	L-W
	Load
	OS Command
	Print Precision
	Random Seed
	Runtime Program
	Set Timer
	Step
	System Names
	Time
	Verbs
	Workspace Size

	 13: SYSTEM VARIABLES
	Current Directory
	Current Global Set
	Current Time
	Host Process (Machine Name)
	Host Process (Port)
	Items Changed
	Message Source (Handle)
	Message Source (User)
	Nil Value
	Self Referent

	 14: SYSTEM FUNCTIONS
	Binary Search
	Delete Indices
	Delete Value / Delete Value List
	Draw
	GMT Time / Local Time
	Integer from Character / Character from Integer
	Julian Day from Date / Date from Julian Day
	Least Squares
	Math Functions
	Matrix Functions
	Membership / List Membership
	Scalar from Vector
	String Match
	String Search
	String Search and Replace
	Vector from Scalar

	 15: SCREEN DISPLAYS
	Data Presentation
	Display Classes

	 INDEX
	Symbols
	! dyad
	! monad
	# dyad
	# monad
	$ dyad
	$ monad
	% dyad
	% monad
	& dyad
	& monad
	'. See quote
	() notation
	* dyad
	* monad
	* wild-card
	*|
	+ dyad
	+ monad
	, dyad
	, monad
	- dyad
	- monad
	-h option
	-i option
	. dyad
	. monad
	. tetrad
	. triad
	..
	.a attribute
	.bg attribute
	.c attribute
	.d attribute
	.e attribute
	.f attribute
	.fg attribute
	.g attribute
	.h attribute
	.k attribute
	.k directory
	.K file
	.k file
	.kk attribute
	.l attribute
	.L file
	.m directory
	.m.c
	.m.g
	.m.h
	.m.s
	.m.u
	.o attribute
	.t attribute
	.t variable
	.u attribute
	.x attribute
	.y attribute
	/
	Comment
	Over Dyad
	Over Monad

	,//
	/:
	/[] Over
	':
	:
	Amend
	Conditional
	monadic case
	Resume
	Return

	::
	< dyad
	< monad
	= dyad
	= monad
	> dyad
	> monad
	? dyad
	Find
	Inverse

	? monad
	? triad
	? wild-card
	?/:
	@ dyad
	Apply
	At
	Execute

	@ Error Trap
	@ monad
	@ tetrad
	[]
	Apply
	Index
	wild-card

	[]:
	Amend
	Item Amend

	\
	Abort
	command
	Scan
	Scan Dyad
	Stop / Trace

	\:
	\\
	_
	\b
	\c
	\d
	\e
	\i
	\l
	\p
	\r
	\s
	\t
	\v
	\w
	^ dyad
	^ monad
	^C
	_ dyad
	_ monad
	_ notation
	_abs
	_bin
	_binl
	_ci
	_cos
	_d
	_di
	_dj
	_dot
	_draw
	_dv
	_dvl
	_exp
	_f
	_floor
	_gtime
	_h
	_i
	_ic
	_in
	_in\:
	_inv
	_jd
	_lin
	_log
	_lsq
	_ltime
	_mul
	_n
	_p
	_sin
	_sm
	_sqr
	_sqrt
	_ss
	_ssr
	_sv
	_t
	_tan
	_u
	_v
	_vs
	_w
	`hide
	`radio
	`show
	{}
	| dyad
	| monad
	|/
	~ dyad
	~ monad
	0: dyad
	0: monad
	0I
	0i
	1: dyad
	1: monad
	2: dyad
	2: monad
	3: dyad
	3: monad
	4: dyad
	4: monad
	5: dyad
	5: monad

	A
	Abort
	absolute name
	absolute path
	absolute reference
	Accumulate
	Accumulate Item
	active directory
	adverb
	adverb composition
	Amend
	Amend Each
	Amend Entire
	Amend Item
	And
	application
	application script
	Apply
	error trap

	Apply Monad
	approximation
	argument list
	argument notation
	arrangement attribute
	ASCII
	Assign
	assignment
	asynchronous communication
	At
	Atom
	atom
	atom function
	atomic
	atomic function
	attribute
	verb

	attribute dictionary
	Attributes command
	authorization vector
	authorized user

	B
	back-quote. See `
	back-slash
	back-slash character
	background attribute
	binary search
	Binary Search function
	boolean
	bracket-semicolon notation
	Break Flag command
	broken connection
	button
	radio

	'button
	button class

	C
	C language
	character constant
	character dimensions
	Character from Integer function
	character string
	character vector
	'chart
	chart class
	'check
	check class
	class attribute
	click attribute
	Close Handle
	closed connection callback
	colon
	color
	column
	column title
	command
	OS (operating system)

	Commands command
	comment
	communication
	Communication Handle
	communication handle
	communication partner
	comparison tolerance
	compilation
	compile
	compound expression
	compound name
	conditional evaluation
	conform
	conformable
	conformable object
	conformable vector
	console
	command

	Console Flag
	control statement
	control-C
	controls
	coordinate
	Copy K Data
	cosine function
	Count
	cross-sectional index
	current directory
	Current Directory variable
	Current Global Set variable
	Current Time variable
	cursor
	Cut
	cycle

	D
	data class
	data type
	K

	Date from Julian Day function
	Deal
	Deal function
	debug
	default
	display

	default arguments
	default directory
	default display class
	default error behavior
	default print precision
	default value
	Delete Indices function
	Delete Value function
	dependencies
	dependency
	dependency attribute
	depth
	derived function
	derived verb
	development cycle
	dictionary
	attribute

	difference
	digit
	directory
	attribute

	Directory command
	Directory Entries command
	display
	Divide
	Do
	Do statement
	Do with trace
	dot
	dot product
	dot-dot
	double click attribute
	double colon
	double-quote character
	Draw function
	Drop
	duplicate items
	dyad
	dyadic function. See dyad
	dynamic load

	E
	Each
	Each Left
	Each Pair
	Each Right
	editable attribute
	empty character vector
	empty expression
	empty list
	encode
	Enlist
	entry
	Enumerate
	enumeration
	Equal
	Error Flag command
	Error Trap
	Error Trap (Monadic)
	escape sequence
	evaluation
	event
	Executable Form
	Execute
	execution monitor
	execution time
	Exit command
	exponential notation
	exponentiation

	F
	factorial function
	field
	fields
	Find
	Find Each Right
	First
	First Reverse
	First-Reverse
	five-colon. See 5:
	fixed function argument
	fixed left argument
	Flip
	floating-point
	number

	floating-point number
	floating-point vector
	Floor
	font
	foreground attribute
	Form
	form. See also notation
	size

	form class
	formal parameter
	Format
	Format (Dyadic)
	Format attribute
	format attribute
	Fortran
	four-colon. See 4:
	function
	external

	function atom
	function composition
	Function Inverse

	G
	get message
	filter

	global assignment
	global dictionary
	global variable
	GMT Time function
	Grade Down
	Grade Up
	graph
	graphical user interface
	Group

	H
	h
	connection filter

	handle
	communication

	Handle variable
	height attribute
	help attribute
	hide
	hierarchy
	homogeneous list
	Horner's method
	host
	Host Process variable

	I
	I/O
	identical
	identity function
	If statement
	immediate verb use
	In Each Left
	incomplete expression
	Index
	index
	Index All
	Index Item
	infinity
	infix notation
	Integer from Character function
	integer vector
	interface
	Internal Data Type
	internet protocol
	interprocess communication
	invalid name
	Invalid Values command
	inverse function
	IP address
	item
	item-at-depth
	Items Changed varaible
	iteration
	trace

	J
	Join
	Julian Day from Date function

	K
	K User Manual
	K-tree

	L
	label attribute
	last
	Least Squares function
	left mouse button
	left to right evaluation
	left-atomic function
	left-to-right
	Less
	lexicographic order
	Link Object Code
	list
	argument
	indices
	one-item

	List Membership function
	list notation
	listening port
	load
	step

	Load Binary File
	Load command
	Load File
	Load K Data
	Load Text File as Fields
	local function
	Local Time function
	localization
	logarithm function
	logical And
	logical negation
	logical Or

	M
	Machine Name variable
	magnitude function
	Make Dictionary
	mapped file
	Match
	math function
	matrix
	display

	matrix inverse
	matrix multiply
	matrix transpose
	Max
	Max-Over
	Maximum
	general form

	Membership function
	memory mapping
	menu
	message
	message filter
	Message Source variable
	Min
	Minimum
	general form

	minimum
	width and height

	Minus
	minus
	Mod
	modify
	modify, verb
	module
	monad
	monadic case
	monadic function
	monitor
	More
	mouse
	mouse button
	multiply

	N
	Negate
	Negation
	logical

	new-line character
	nil
	Nil variable
	nilad
	niladic function
	Not
	not-a-number
	notation
	bracket-semicolon

	null
	number
	numeric list

	O
	object code
	octal number
	Of
	one-colon. See 1:
	one-item list
	Onto
	operand
	operating system
	operating system command
	operator. See adverb
	Option List attibute
	option list attribute
	Or
	order
	order of evaluation
	OS. See operating system
	Over
	Over Dyad
	Over Monad

	P
	padding
	partition
	partner
	communication

	permutation
	'plot
	plot class
	Plus
	Plus-Over
	polynomial evaluation
	port
	Port variable
	Power
	precedence
	prefix
	primitive attribute
	primitive function
	print precision
	Print Precision command
	process
	programming language
	projection
	pulldown menu

	Q
	quote

	R
	radio class
	radix
	Random Integer
	Random Probability
	Random Probability function
	random seed
	Random Seed command
	Random Selection function
	Range
	rank
	Reciprocal
	rectangular list
	recursive function
	referent
	relational database
	relational table
	relative name
	relative referent
	remainder
	Remote Get
	Remote Set
	replace
	Reshape
	residue
	Resume
	Return
	Reverse
	RGB
	right-atomic function
	root directory
	Rotate
	runtime program

	S
	Save File
	Save K Data
	Scalar from Vector function
	scale
	Scan
	Scan Dyad
	Scan Monad
	screen display
	script
	script file
	scroll
	search and replace
	Secant
	Self Referent variable
	server
	session log
	set message
	filter

	Set Timer command
	Shape
	show
	side effect
	Signal
	signal
	simple verb
	sine function
	singular matrix
	sort
	sort order
	space
	used and allocated

	spreadsheet
	spreadsheets
	square matrix
	Step command
	Stop
	String Match function
	String Search function
	string-atomic
	subdirectory
	sum
	sum-of-squares
	Sun
	suspended execution
	symbol
	symbolic indexing
	Synchronized File Append
	synchronous communication
	synchronous connection filter
	syntax
	system function
	system name
	System Names command
	system parameter
	system variable

	T
	tab character
	table
	database

	Take
	tangent function
	tetrad
	three-colon. See 3:
	Time command
	timer
	Times
	tolerance
	tolerantly equal
	top-level item
	Trace
	transpose
	trigger
	trigger attribute
	two-colon. See 2:
	type

	U
	underscore
	Unmake Dictionary
	unspecified arguments
	update
	update attribute
	User Manual. See K User Manual
	User variable
	utility script

	V
	valence
	validation attribute
	Value
	variable
	global. See global variable

	vector
	floating-point
	integer

	Vector from Scalar function
	vector notation
	verb
	verb modification. See adverb
	view

	W
	Where
	While
	with trace

	While statement
	width attribute
	wild-card
	Workspace Size command

