

Kdb Programmers Manual

Inc.

ored
onic,
per-

out
 Sys-
 may
ense
Kdb Programmers Manual Copyright © 2000 by Kx Systems,

Edition 1. All rights reserved. No part of this publication may be reproduced, st
in a retrieval system, or transmitted, in any form or by any means, electr
mechanical, photocopying, recording, or otherwise, without the prior written
mission of the copyright owner.

This book is furnished for informational use only, is subject to change with
notice, and should not be construed as a commitment by Kx Systems, Inc. Kx
tems assumes no responsibility or liability for any errors or inaccuracies that
appear in this book. The software described in this book is furnished under lic
and may only be used or copied in accordance with the terms of this license.

Contents
1 Introduction 1

RDBMS 1

High Performance 1
Analytic Server 2

Kdb Architecture 3
Kdb Flexibility 3
Other Kdb Information 4

Evaluation Kdb 4
Production Kdb 4
Who Should Read this Manual5

2 Design and Performance7

Memory Architecture 7

Shuffle Architecture 9
Parallel Architecture 10

Distributed Queries 10
Performance of Parallel Databases11

Transaction Processing12

The K Programming Language13

3 Creating and Managing Kdb Databases15

Database Organization on Disk15
Creating Databases15

Enumeration 16

Managing User Access17
The user Table 17
The access Table 18

Customizing Kdb Databases19
Column Attributes 19
 Custom Analytics and Stored Procedures20

4 Starting and Managing Kdb Servers23

The Kdb Startup Command23
The ODBC flag -dsn 23
KSQL Reference Manual i

http://www.kx.com

The data source name f 24
The Web server port -P[n] 24

The TCP/IP port -p[n] 25
The transaction logging flag -l 25

Rollbacks 25

Replication server location -r[h]p 26
Starting a Shuffle Database26

Connecting to a Kdb Server27
JDBC 28
ODBC 28

KDBC 28
Remote Procedure Calls29

Bulk Updates 29

Managing Transaction Logs 30

 Gateway Servers30

5 Kdb Topics 31

Estimating Performance in Memory Databases31
An Example 31
Base Statements are Generic32
Other Base Statements32

Search Phrases 33

where Phrases 33

The Performance Unit MRPS34

SQL Performance 34
Estimating Temporary Storage Requirements34
Estimating Real Memory Requirements35

K Language Essentials35
Data Types 35

The K Tree 36

Attributes 37

Inter-process Communication37

Connecting 37

Sending and Receiving 38

Closing a Connection 38

File Management 38
Functions 39
K and Kdb 39
ii KSQL Reference Manual

The tpcb Example 40

Each Operators 41

6 Database Topics 43

Multi-Threading 43
Example 43

7 The C - K Interface 45

Introduction 45
Compilation 45

Header and Lib files 46

The C Structure of the K Data Object46

Data Types 46
Creating K Atoms 47
Creating K Lists 47

Creating Character Vectors47
Creating Dictionaries 48

Accessing and Modifying K Atoms48
Accessing and Modifying K Lists 48

The Access Function for a General List49
Appending to a K List 49

Calling K from C 49
C calling K calling C 50

Linking to C Functions in K 50

Signalling a K Error 51
Managing Reference Counts51
Date Conversion 52

Registering K Event Loop Callbacks53
Example: Summing Two K objects53
Example: Accessing a Kdb Server with KDBC54

Example: Evaluating KSQL Statements55
Example: A Remote Procedure Call55
KSQL Reference Manual iii

1 Introduction
r

closer
ad.

ro-
ts.
ML

everal
lta-
P,
. And
an ana-
re

cause

ount
om
sys-
his in
The home page on the Kx website displays the following succinct description of thei
database products.

 High-performance analytic database servers

This manual is an elaboration on that statement in technical terms. We begin with a
look at the statement itself that will lay the groundwork for the technical chapters ahe

RDBMS

First of all, let us understand that database server implies, among other things, relational
database server. Kdb supports ANSI SQL and the client interfaces that application p
grammers have come to expect: JDBC for Web clients and OBDC for Windows clien
Kdb databases can also be published and queried directly over the Web in HTML, X
and CSV format.

Kdb servers run on Linux, NT and UNIX.

High Performance

Performance of database servers generally refers to through-put, of which there are s
flavors. There is transaction processing, which generally means many (nearly) simu
neous, small interactions with a database. There is decision support, including OLA
which involves substantial data analysis that may be either precomputed or real-time
there are data warehouses, which hold vast amounts of data that can be mined (like
lytic server) or distributed to “retail centers”, databases that interact with clients. The
are Kdb customers in all three areas that chose Kdb over the competition, in part be
of its performance advantage.

How does Kdb performance excel in all three areas? While no single factor can acc
for everything, the most prominent one is also particularly relevant to this manual: fr
the beginning, the performance characteristics of modern computers and operating
tems has been a major factor in the design and implementation of Kdb. We will see t
Kdb Programmers Manual 1

Introduction

here

n the
 ana-
y

h

rder in
ple,

d in
rver

rst,
 with-
 that
 gen-
sent to
and

ge
s, but
xten-
L

ibil-
the organization of Kdb data, in the characteristics of the KSQL language and elsew
throughout this manual. We will also see that Kdb performance is close to optimal.

Analytic Server

An analytic database server is one where data analysis can routinely be performed o
server instead of on clients' workstations. The typical SQL database server is not an
lytic server. SQL is simply not suitable for many computations and too slow for man
others. However, Kdb extends SQL with

• order (in practice, usually time-dependent order),

• function-based access to indicative tables for roll-ups, and

• extensible queries using customer-defined analytics.

to create KSQL, a powerful computational language. KSQL, together with Kdb’s hig
performance, makes Kdb an analytic server.

Who needs an analytic server? Analyses of data on an SQL server that depend on o
the data – usually, date order – are typically done on clients' workstations. (For exam
analyzing increments in sales from one day to the next requires data to be processe
chronological order). SQL does not recognize order. The most that a typical SQL se
can do is return data to clients in a prescribed order, where the analyses is done.

There are many problems associated with performing analysis on the client side. Fi
client code is complicated enough managing user interactions and report generation
out the additional complications posed by analytical code. Second, it is fairly typical
the analytical results are relatively small compared to the amount of data required to
erate them. If the computations are done on a server then only the results must be
the client, while large amounts of data sent to clients for analysis can clog networks
workstations.

In contrast to a typical SQL database, Kdb tables are ordered and the KSQL langua
works with ordered tables. You can ignore the order and use SQL on Kdb database
you can also have an analytic server by using KSQL. In addition to order, KSQL is e
sible. Customers can define their own specialized analytics that can be used in KSQ
queries as if they are KSQL primitive functions. KSQL is SQL with order and extens
ity.
2 Kdb Programmers Manual

Kdb Architecture

x

d.
s

ytes.
t to the
on the
ation

00
tec-
ure.

-
are col-

rted,

rd client

ge-
m that
or

 peri-
Kdb Architecture

There are three architectures for Kdb databases. The first level is virtual memory data-
bases, or simple memory databases. Virtual memory databases are limited only by the
practical limits for virtual memory on the server, about 1.5 gigabytes for NT and Linu
and 3 gigabytes for UNIX. These databases require the least maintenance.

The second level of architecture is called shuffle because it generally marks the point
where segments of the database are shuffled in and out of virtual memory on deman
Tables in Kdb are stored in column order; in particular, an integer column with N item
requires 4N bytes of storage and a floating point column of that length requires 8N b
The shuffled database segments are columns of designated tables. There is no limi
size of a shuffle database other than disk space. There is, however, a practical limit
size of table columns: for optimal performance, all columns required for each comput

must fit entirely in real memory1. This requirement still allows for very large tables in
large shuffle databases. For example, one Kdb customer queries tables of 35,000,0
rows (and growing) and 200 columns. In this particular application, the shuffle archi
ture can accommodate a database that is 50 times larger than the memory architect

The third architectural level is called parallel. The only limit on the size of a parallel data
base is the amount of disk memory on the server. Conceptually, parallel databases
lections of virtual memory or shuffle databases.

Given modern high-speed sequential disk access, real memory caching and the inve
column-oriented layout of Kdb tables, the performance when data on disk must be
accessed can approach that of a memory database.

Kdb Flexibility

Kdb database systems are programmable systems. Kdb databases have the standa
interfaces, JDBC and ODBC, for sending KSQL and SQL commands to servers and
receiving results. Kdb also has its own interface, KDBC, for remote database mana
ment. Using KDBC, customized processes can be introduced into a database syste
modify default Kdb server behavior such as transaction logging and client access. F
example, a KDBC client that is also connected to a real-time security price feed can

1. The optimal performance requirement applies to virtual memory databases as well.
Kdb Programmers Manual 3

Introduction

to
usand

-

 of
 notes,

 at

but

 their
y

m
f

all
 differ-
 instal-
ontact

ting a
odically collect prices from the feed and send them to a Kdb server as bulk updates
achieve a one hundred-fold increase in the rate of updates, typically one hundred tho
updates per second instead of one thousand per second.

Custom analytics and KDBC clients can be written in C or K, the implementation lan
guage of Kdb. KDBC clients can also be written in Java and Visual Basic.

Other Kdb Information

The examples in this manual go into sufficient detail to give a comprehensive picture
the Kdb databases and what must be done to customize and maintain them. Related
comments, performance numbers and application kernels can be found on the web,
www.kx.com/a/. The web files are maintained by Arthur Whitney, the architect of Kdb
and CTO of Kx Systems. This manual is essentially an elaboration of that material,
does not cover everything.

Evaluation Kdb

You will see is that it is relatively easy to create and use sample databases, and test
performance as well. Hopefully this will induce you to try Kdb on your data. It is eas
(and fast) to download Kdb for an evaluation period; see the Kx website, www.kx.co,
and “Production Kdb”, below, for more details. Contact Kx Systems, the developer o
Kdb, if you have special requirements.

Production Kdb

Kdb is downloaded from the kx website and installed in a matter of seconds. That's
there is to it. It's the same process as downloading the evaluation version. The only
ence between the evaluation version and the production version is the license. The
lation process installs an evaluation license unless a production license is present. C
Kx Systems at www.kx.com for information on production licenses.

When the installation completes you will see a window entitled trade.t and a text file
named Kdb.txt. The trade.t window is the Kdb (database) Viewer. Kdb.txt contains infor-
mation about the Viewer, an example of a query construction and an example of crea
Kdb Web Viewer.
4 Kdb Programmers Manual

http://www/kx/com/a/
http://www.kx.com
http://www.kx.com
khttp://www.kx.com
khttp://www.kx.com

Who Should Read this Manual

at the

 eval-

ation

-
b
nce
emory
uilt,

 and
ases.
 their
y. The
Kdb is rock solid, but there are a few simple things that can be done to make sure th
installation went OK. For example, the Viewer window has a queries button. Press it and
a query entry panel will be displayed with two sample queries. Click on either one to
uate it. Or go through the examples in Kdb.txt. If everything looks OK, you're done.

The download takes a few seconds, depending on your internet hookup. The install
(execution of kdbsetup.exe) is nearly instananeous.

Who Should Read this Manual

The first manual in this series, Introduction to Kdb, is for professionals who do not neces
sarily know how to program. It shows how to build (memory) databases from the Kd
Viewer and how to construct elementary queries. The second manual, KSQL Refere,
defines the KSQL query language. The sample databases in that manual are also m
databases. Using only these two manuals, complex, substantial databases can be b
maintained and accessed with no previous programming knowledge.

This manual – the third – is directed at a different audience, database administrators
programmers. It’s focus is what they must know and do to create powerful Kdb datab
The next chapter, “Design and Performance”, describes the three Kdb architectures,
performance characteristics, and indicates what must be done to use them effectivel
rest of the manual gives the details.
Kdb Programmers Manual 5

2 Design and Performance
of
db,

r,
re
actual

base

d
abases
e
base;

mall
g the
ost

em-
point
as they
ot only
as 1-
ectly
speed
The chapter gives a technical overview of the three Kdb architectures. Other notes
interest on this subject by Arthur Whitney, the architect and principal implementer of K
can be found on the Kx Systems website at www.kx.com/a/kdb/. Some of those notes are
elaborated on here.

All performance numbers given here were taken from the author’s desktop compute
which has one 450MHz Pentium III processor and 128 mb of RAM. The numbers a
used to illustrate methodologies for estimating Kdb performance and not to suggest
performance on database servers.

Memory Architecture

A significant part of this manual is devoted to programmers who customize Kdb data

systems that are larger than 2 gigabytes. The Kdb memory1 architecture is the one to use
for databases up to 2 gigabytes. Kdb memory databases are the easiest to build an
require the least maintenance. The size restriction is due to the fact that memory dat
are loaded entirely into virtual memory when they are activated. (In that regard, mak
sure that every page file on the host computer is large enough to hold the entire data
if not, a workspace full message will be reported if the operating system assigns too s
a page file to the Kdb server process.) Optimal performance is achieved by matchin
amount of real memory on the host computer to the execution requirements of the m
active queries of the database.

Every table in a memory database is arranged in column order, both on disk and in m
ory. Every column is memory-mapped when a table is loaded. Integer and floating-
columns are loaded – that is, mapped – instantaneously. Varchar items are hashed
are loaded and therefore take longer to load – about 1,000,000 items per second. N
are tables stored in column order, but integer and floating-point columns are stored
dimensional C-language arrays. KSQL computational functions are implemented dir
in C. Consequently, KSQL statements execute at near-optimal speeds. The actual
can be closely estimated for any KSQL or SQL statement.

1. The word “memory”, when not modified by “real” or “virtual”, means virtual memory.
Kdb Programmers Manual 7

http://www.kx.com/a/kdb/

Design and Performance

nt of
e
cles
uired
 the
ns that
 in the

d 3
ts
rary

t

meth-
ory

6 mb
mes
ate-
en

t no
y

dis-
ed seri-

imes
xecu-
ution
ments
An important characteristic of Kdb memory databases is that all but a negligible amou
processing power in executing a KSQL or SQL statement is directly attributable to th
processing power required by the components of the statement: namely, the CPU cy
required to execute the statement are – very nearly – the sum of the CPU cycles req
by the components. There are no hidden execution costs that are not attributable to
host operating system. For example, the execution costs depend only on the colum
appear in the statement and the ways they are used; the number of unused columns
table doesn’t matter.

The practical upper limit on memory databases is 1.5 gigabytes on NT and Linux an
gigabytes for UNIX. This estimate includes space for temporary storage requiremen
while statements are being evaluated and transaction logs, if any. The size of tempo
results is most important because all columns required for each computation must fi
entirely in real memory for optimal performance. The objective is to be CPU bound.

The section “Estimating Performance in Memory Databases” on page 31 describes
odologies for estimating performance, temporary storage requirements and real mem
requirements of KSQL analytical statements, e.g. select statements. The example is the
following aggregation on two table columns of a table with 1 million rows.

select sum amount by stock.industry, date.month from trade

This statement evaluates in 1 second. The storage size of the 1 million row trade table is
20 mb. Both the temporary storage requirement and real memory requirement are 1
per million rows. As the size of the table is increased incrementally, the execution ti
of the simple component statements increase linearly. The execution times of the st
ment itself start out linear, but are eventually overwhelmed by memory swapping wh
the available real memory is exhausted by the by phrase evaluation. This example illus-
trates the general rule: for optimal performance, the real memory requirement is tha
table column used in computations should exceed 25% of RAM. (RAM is a relativel
cheap route to a trouble-free, high performance database server. Load up!)

An individual Kdb server is single-threaded (see “Multi-Threading” on page 43 for a
cussion of this design choice). Single-threaded means that user requests are handl
ally, which makes it easy to estimate through-put. Specifically, execution costs are
additive, i.e. the time for a server to execute a suite of statements is the sum of the t
for the individual statements. It is typical that most of the time is spent on repeated e
tion of relatively few different statements. In this case the approximate average exec
time for a request is simply a weighted average of the execution times for those state
8 Kdb Programmers Manual

Shuffle Architecture

ulated

s the
mem-
of
sarily in
 table
to vir-

s that
ns are
.

these
 for
nto a

for-
ith an

ssing
, pre-
g a

g can
l-

ory
ess of
isec-
mory.
by their relative occurrence frequencies. Various through-put measures can be calc
from this average.

Shuffle Architecture

The shuffle architecture is one of the two choices available when a database exceed
limits of a memory database. In this framework, selected tables are not loaded into
ory when the database is activated. Instead, their columns are “shuffled” in and out
memory, as needed. Columns that are not needed at a particular time are not neces
memory. The shuffle architecture depends on the fact that only a few columns of any
are ever needed at exactly the same time. Tables that are not shuffled are loaded in
tual memory. Consequently we speak of shuffle tables and memory tables.

Both shuffle and memory tables are arranged in column order. The only difference i
the columns of shuffle tables must be stored separately on disk. Tables whose colum
stored separately on disk are said to be splayed. Shuffle tables are always splayed tables
However, tables in memory databases can be splayed on disk or not.

Tables with many columns are the best candidates for shuffling because the bulk of
tables will always be out of memory. In the case where only a few columns account
most of a table’s references in queries, it may be possible to isolate those columns i
separate memory table and leave the remainder as a shuffle table.

The methodology for estimating performance in memory databases (“Estimating Per
mance in Memory Databases” on page 31) can be used for shuffle databases, but w
additional consideration. The items of a varchar column are not simply mapped into
memory; they are also pre-processed to optimize searching and storage. Pre-proce
occurs only once for a memory database, when it is first activated, and consequently
processing effects do not appear in performance estimates. However, pre-processin
column of a shuffle table happens every time the column is mapped. Pre-processin
be avoided by using enumeration, which makes varchar columns behave like integer co
umns; see “Enumeration” on page 16.

Column items are stored contiguously on disk and laid out contiguously in real mem
when accessed. This organization gives optimal disk access performance. (Disk acc
an integer column on a high performance server can be on the order of 100-200 mill
onds.) However, the operating system caches accessed shuffle columns in real me
Kdb Programmers Manual 9

Design and Performance

eal

ating
t with

 to the

ire-
e same
t no

ce for
arallel
e data-
t satis-

ibuted

tail

-

n
Consequently, if the memory hit-rate (so-called locality) is high, the performance is r
memory performance.

The methodology for temporary storage requirements in memory databases (“Estim
Temporary Storage Requirements” on page 34) also applies to shuffle databases, bu
one additional point. The storage requirements for shuffled columns must be added
memory database estimates whenever a shuffled column is referenced.

Real memory requirements for optimal performance (“Estimating Real Memory Requ
ments” on page 35) are the same as for memory databases. In particular, there is th
size constraint on table columns, shuffled or not: the real memory requirement is tha
table column used in computations should exceed 25% of RAM.

Parallel Architecture

The parallel architecture is both an alternative to the shuffle architecture and the choi
databases that exceed the limits of a shuffle database. There are no size limits to p
databases other than disk space. A parallel database is a family of memory or shuffl
bases. That is, a source database that is physically partitioned so that each segmen
fies the virtual and real memory requirements. In principle, there can be as many
segments as necessary. The segments can all run on one host computer or be distr
among several.

Distributed Queries

SQL and KSQL statements can be executed in a distributed manner. Consider a de
table A that is partitioned into two detail tables B and C, so that every row of A is either in
B or in C, but not in both. For example, consider the select statement

select price, quantity from T where quantity>1000

Apply this statement to A (in place of T) and let R be the result table. Then apply it, sep
arately, to both B and C and let S be the union of those two result tables. R and S are iden-
tical SQL tables. However, as KSQL tables, their row orders may differ, depending o
how B and C were extracted from A.

Aggregations require an additional step. For example,

select sum quantity by stock from T where quantity>1000
10 Kdb Programmers Manual

Parallel Architecture

ing
ever,
e

 per-

 when
t be as
t a
own to
s
a nor-
ributed

egment
or this
ingful
 evalu-
 time
 Note
mory

 net-
olidate
 mod-
ts if
tion

le for
l
is
Create R and S as before. If a stock appears only in B or only in C then the rows for that
stock in R and S are identical. Otherwise, there are two rows in S whose quantity values
sum to the corresponding value in R. Apply the aggregation statement (without the where
phrase) a third time, to S, to produce a result equivalent to R.

As of this writing, Kdb support for parallel databases requires the distributed process
language K. A dedicated Kdb parallel module is in the planning stage. It is not, how
difficult for programmers to deal with parallel databases and distributed queries, as w
will see in “Gateway Servers” on page 30. The example in that section supports the
formance discussion that follows.

Performance of Parallel Databases

Each partition in a parallel database has its own Kdb server. All servers are running
the database is active and each one must have its own page file. That is, there mus
many page files of sufficient size as active servers. Clients can be organized so tha
request is sent to a particular server when the database segment in that server is kn
have all the required data, or to a gateway server that receives all Kdb requests, distribute
them to the parallel servers and consolidates results. Each single server request is
mal database request, which has already been discussed. The focus here is on dist
requests.

In a distributed request, the same statement goes to every server. Every database s
is a memory database and therefore the MRPS (million rows per second) estimate f
statement (see “Estimating Performance in Memory Databases” on page 31) is mean
for each segment. Using that estimate, we know how many seconds are required to
ate the statement in every server. The sum of those numbers is the total evaluation
(although the elapsed time is the maximum value if all servers use different CPUs).
that the sum equals the evaluation time when the entire reference table fit in one me
database.

Additional elapsed time goes to operating system costs to manage multiple servers,
work costs to distribute requests and send back results, and dispatcher time to cons
results. Modern operating systems are very good at running multiple processes and
ern disk technology deals efficiently with large page files. There are no network cos
all servers, including the gateway server, run on the same host computer. The execu
time for table unions can be estimated like any other KSQL statement, but is negligib
commonly-sized results. If the distributed query is an aggregation then an additiona
aggregation must be done in the gateway server. However, the execution time for th
Kdb Programmers Manual 11

Design and Performance

sults,

uted
buted
ual

n on a

 exam-
er the
rds,

evalua-
single
 are
ed

tead,
 a very

 writ-
 is
iffer-
ndard

di-
nserts
rt anal-
ular
In
f indi-
additional aggregation is negligible because it is applied to a union of aggregation re
which is relatively small.

In the example in “Gateway Servers” on page 30, the total elapsed time of the distrib
query was 5% more than the evaluation time. That is, the elapsed time for the distri
query, which includes all overhead as well as the total evaluation times on the individ
memory databases, is 5% more than the evaluation time when the same query is ru
single memory database.

Parallel databases can take advantage of multiple CPUs on the host computer. For
ple, if there are two CPUs and the load of a distributed query is equally balanced ov
two, then statement evaluation time, viewed as elapsed time, is halved. In other wo
through-put is doubled.

To summarize, when a parallel database runs on one host computer, the measured
tion time for distributed requests is approximately the same as a single request in a
memory database. The measured elapsed time is approximately 5% more. If there
multiple CPUs and processing is well-balanced, the apparent evaluation time (elaps
time) is reduced by a factor nearly equal to the number of CPUs.

Transaction Processing

Consistent and fail-safe ways to update databases is not a topic for this manual. Ins
we must concentrate here on the tools for implementing update strategies. There is
useful paper on the kx website, High Volume Transaction Processing, that is relevant to
transaction processing in Kdb databases. The paper predates the Kdb product. It is
ten in terms of K, the implementation language of Kdb. However, most of the paper
about databases and the reader who is familiar with this chapter will recognize the d
ent Kdb architectures. The paper also contains performance numbers based on sta
benchmarks.

There are two types of transactions in Kdb, individual and bulk. An example of an in
vidual transaction is a bank account deposit and withdrawal. Bulk transactions are i
or updates of large number of rows, all at once. For example, databases that suppo
yses of telecommunication or security trading activities are generally updated at reg
intervals with bulk transactions instead of continuously with individual transactions.
Kdb a bulk transaction is a single message to the database server, not a sequence o
vidual update statements.
12 Kdb Programmers Manual

http://www.kx.com/technical/papers/hpts1.pdf

The K Programming Language

ivid-
ance

ments
his

ments.
 if they
 in each
ee

uld
ble
atches

 for a
ping
rger
 of a
tely
very
here

tec-
f this

 is a

as

ike

fined
r via
 ana-
The bank account benchmark application provides an interesting example of how ind
ual transactions can be processed collectively as bulk transactions to improve perform
(see http:www.kx.com/a/kdb/examples/tpcb.t). In this example there are 100 bank
branches, 10,000 tellers and 1,000,000 accounts. A transaction increments or decre
an amount from the specified account, from the teller’s total and the branch’s total. T
author timed 50,000 transactions on the database server process, in various arrange
If the transactions arrive one a time, the server evaluates about 2000/sec. However,
arrive in batches of 5 each, the server evaluates about 6000/sec., and if there are 10
batch, about 7200/sec. One batch of 50,000 evaluates in about 200 milliseconds. S
“The tpcb Example” on page 40 for the way these timings are done.

Knowing the arrival rate of individual transactions at the server tells us how they sho
be grouped in batches. Grouping transactions at each branch can cause unaccepta
delays. However, a gateway server that receives all transactions can send them in b
to the database server and distribute the results.

The example bank account database is a small memory database with plenty of room
transaction log (see “The transaction logging flag -l” on page 25). Realistically, grou
transactions is most likely not necessary, even if ATM machines are included. For la
databases, bulk updates go well with the shuffle architecture because every column
shuffle table, which is shuffled in and out of memory, must be saved to disk immedia
after it is modified. It is best that a column contains a significant number of changes e
time it is saved to disk. Very large databases that can be partitioned for updates – w
the data required for any transaction is entirely in one partition – fit the parallel archi
ture and require very little customizing. See the paper referenced at the beginning o
section for a general approach in other situations.

The K Programming Language

The implementation language of Kdb is K, which is also a product of Kx Systems. K
high-performance, high-level array language. K is implemented in C. With regard to
arithmetic and relational primitives, K is like a C macro language for arrays. K also h
highly-optimized advanced primitive functions, such as binary search. Additionally, l
Java, K memory management is transparent.

Kdb databases can be enhanced with functions defined in K or C. K functions are de
in K and Kdb scripts and loaded into the server. C functions are linked into the serve
K and Kdb scripts and behave like K functions. Database enhancements, i.e. custom
Kdb Programmers Manual 13

http:www.kx.com/a/kdb/examples/tpcb.t
http:www.kx.com/a/kdb/examples/tpcb.t

Design and Performance

d K;

ritten
n-
lytics and transaction definitions (so-called stored procedures), require no K knowledge
by C programmers. However, C programmers do need the interface between C an
see the chapter “The C - K Interface”.

Kdb clients and gateway servers can be written Java, C and K; clients can also be w
in Visual Basic. A bit of K knowledge is required of C programmers here; see “K La
guage Essentials” on page 35.
14 Kdb Programmers Manual

s
3 Creating and Managing Kdb Database
essing
ins as
en writ-

file

table

 it is
not
ac-
par-
f the

very

d
e

on
he
Database Organization on Disk

We have already dealt with the performance characteristics of Kdb databases for acc
and manipulating data (see chapter “Design and Performance”). The question rema
to how the saved database should be arranged on disk for the best performance wh
ing modified data to disk.

There are two ways to arrange a Kdb database on disk, either as a single database
(extension .kdb) or in splayed format, i.e. as a directory whose entries are tables (the
directory is the database). When a database is splayed into individual tables, each
can also be arranged in one of two ways, either as a single file (extension .l) or splayed as
a directory whose entries are files containing individual columns (extension .l).

A memory database can be arranged in any way that conforms to these rules. How
done is largely a matter of convenience when building the database and whether or
default logging will be used, which requires a single file arrangement (see “The trans
tion logging flag -l” on page 25). However, if performance is in issue when saving a
ticular table, then that table should be splayed on disk when the its size exceeds hal
available RAM.

A shuffle database must be splayed because every shuffle table must be splayed. E
splayed table is a shuffle table.

Creating Databases

A Kdb database can be initialized in the conventional way using SQL create statements in
a SQL script (extension .s) or KSQL table initialization statements (see “Empty Lists an
Empty Tables” in the KSQL Reference Manual). Small tables can also be populated at th
same time they are created using KSQL table initialization.

A database can also be created by starting a server with a KSQL script in which load state-
ments bring in tables from files of any type that appear in “The data source name f”
page 24. The load statements can also be entered by hand in the Kdb console after t
server is started.
Kdb Programmers Manual 15

Creating and Managing Kdb Databases

.

a
he cus-

d

.

or-
y

s
y

st

))

al-
Once the database is create it must be saved. It can be saved in one file as follows

save 'c:/dbs/test'

The saved database is c:/dbs/test.kdb. Each table must be saved separately to create
splayed database, in which case each table can be splayed or not. For example, if t
tomer table is to be saved as one file, use save dyadically, as follows.

'c:/dbs/stest' save 'customer'

The saved table is c:/dbs/stest/customer.i. Use rsave to save the order table as a splaye
table.

'c:/dbs/stest' rsave 'order'

The saved table is the directory c:/dbs/stest/order; the columns are files in that directory

Enumeration

Every time a varchar column is loaded into memory it is pre-processed to optimize st
age and searching. This cost can be avoided for a column that is loaded frequently benu-
merating the column. An enumerated varchar column is an integer column whose item
are indices into a reference varchar column. Typically, the reference column is a primar
key column and the enumerated column is a foreign key.

Enumerated columns are like date columns. For example,

trans:([n:('cart', 'bike', 'roadster')] w:(4, 2, 4))

o:([] n:('cart', 'roadster', 'bike', 'cart', 'cart', 'bike'),

 d:('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997'))

Even though column d is intended to be a date column, it is simply a varchar column
whose items look like dates. To make d a column of dates, the relationship to dates mu
be made explicit.

o:([] n:('cart', 'roadster', 'bike', 'cart', 'cart', 'bike'),

 d:date('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997'

The entries of column d are now integers, the Kdb internal representation of dates. An
ogously, to enumerate column o on the primary key of trans, the relationship must be
made explicit.
16 Kdb Programmers Manual

Managing User Access

))

se
 be lim-
words
 then
o:([] n:trans('cart', 'roadster', 'bike', 'cart', 'cart', 'bike'),

 d:date('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997'

The entries of column n are now indices into column n of table trans. Column n is now
an enumerated column.

A text representation of dates can be used in where phrases, and this is also true of enu-
merated columns. For example, the following statement is valid.

select from o where n ='cart'

Also like dates, enumerations must be explicit in inserts.

'o' insert (trans('bike'), date('04/02/1999'))

Managing User Access

There are two reserved tables in a Kdb database, access and user. The access table holds
information on which tables can be seen or modified by which users. The user table holds
user names and passwords. If a user table is defined then every connection to the databa
requires a user name and password. Consequently, if access to the database must
ited, the prudent thing to do is include the database administrators’ names and pass
in the user table’s initialization when the database is created. The administrators’ can
give access to others.

The user Table

The user table is managed like any other table. It has columns named user and password
and can be initialized as follows.

user: ([user:()] password:())

Both fields are varchar fields. An administrator (or any user) can be added.

'user' insert ('admin', 'pw310')

Alternatively, administrators (or users) can be included when the table is defined.

user: ([user: enlist 'admin'] password: enlist 'pw310')
Kdb Programmers Manual 17

Creating and Managing Kdb Databases

e. The
e ref-

ust be
es are
The access Table

The access table has columns access, var and user. The access column holds the type of
access allowed to the data object named in var for the user named in user. Note that data
objects are not just base tables, but include views and any other data in the databas
select entries for a base table are inherited by any view for which that base table is th
erence table. On the other hand, users can have select access to a view without having
select access to its reference table.

The access table is initialized as follows.

access:([access: (), var: (), user: ()])

All three fields are varchar fields. Every entry of the access column is one of 'delete',
'insert', 'select', and 'update'. Like the user table, the access table can also be managed like
any other table. In addition, permissions can be specified with the SQL grant statement.
For example,

grant all on all to admin

gives this administrator complete access to all data in the database. Note that “$” m
appended to the front of this statement if it appears in a KSQL script. Other exampl

grant select on all to all

lets everyone access and modify all tables, including user and access,

grant all on t to all

lets everyone access and modify the table t,

grant insert on all to tom

lets Tom insert data in any table, and

grant update, delete on t, u, v to mary, andrew

lets Mary and Andrew update and delete tables t, u and v.

Kdb does not support the with grant option on a grant statement.
18 Kdb Programmers Manual

Customizing Kdb Databases

ictio-
ed

ta.

n
ld-

ver,
 not

 col-

, 0

ut not

lue
to do
fault
Customizing Kdb Databases

Column Attributes

Every table column has a set of attributes that are defined in the column’s attribute d
nary (see “Attributes” on page 37). Attributes are defined using a syntax that is carri
over from K. The column width attribute, for example, is denoted by W and is defined for
column name of table customer as follows.

customer.name..W:4

Any customer name with more than 4 characters will now display as “****”. This
attribute does not have a default value because Kdb estimates the width from the da
Attributes with default values do not necessarily appear in attribute dictionaries.

The T attribute specifies the column type. This may be the data type, i.e. 'int', 'float', 'var-
char' or 'varbinary'. The column type can also be any date, time or timestamp type, such
as 'date', 'day', 'month', 'time' and 'timestamp'. It can also be the name of the table by
which the column is enumerated. For example, in “Enumeration” on page 16, columo.n
has type 'trans'. Finally, the type of a foreign key is the (enlisted) name of the table ho
ing the primary key. For example, if the primary key table is customer then the type
attribute of the foreign key column is enlist 'customer'.

The value of the T attribute need not be set for tables defined by KSQL or SQL. Howe
it may be necessary to do so for imported tables. Note that setting the attribute does
automatically force conversion of the data to that type.

The P attribute specifies the number of decimal digits to be displayed in floating-point
umns. Its default value is 2.

The N attribute indicates whether or not the column can contain null values (1 for yes
for no). The default value is 1.

The D attribute defines the default value to be used when a column item is needed b
specified. The default is the null value for that column.

The K attribute indicates whether or not a column is a primary key (1 if yes). The va
need not be set for tables defined by KSQL or SQL. However, it may be necessary
so for imported tables. Note that all primary key columns must appear first in the de
column order, i.e. the order of a select statement where no columns are specified.
Kdb Programmers Manual 19

Creating and Managing Kdb Databases

ted).
one.
lly is

med

stom
 argu-
edded
ooth-

 par-
ee

that
in-

d

in

QL
The S attribute indicates whether or not a column is sorted in ascending order (1 if sor
This value is used by Kdb to determine whether or not optimized searches can be d
The value must be explicitly set. It is up to the user to ensure that the column actua
sorted.

When a splayed is saved the attributes are saved in the table directory as the file na
“.l”. That is, the name consists of only the .l extension.

 Custom Analytics and Stored Procedures

Functional enhancements to Kdb servers are generally in one of two areas, either cu
analytics or stored procedures. Custom analytics typically take 1-dimensional array
ments – i.e., table columns – and return conformable array results. They can be emb
directly in KSQL statements as if they are KSQL primitives. For example, a data-sm
ing function that applies to two columns, price and date, can be used as follows.

select price, date, smooth[price,date] from trade where amount>1000

Custom analytics can be written in K, the implementation language of Kdb, and C. In
ticular, C mathematical library routines can be linked into Kdb as custom analytics; s
“Linking to C Functions in K” on page 50.

Stored procedures usually define transactions, i.e. collections of table modifications
must be completed without intervening modifications from other sources, thereby ma
taining database consistency. Stored procedures can also be written in K or C.

Kdb provides the entry point .d.r for evaluating KSQL and SQL statements within store
procedures. For example,

.d.r"update qty:2*qty from 'OrderItems' where orderid=6099"

is a K expression that updates the OrderItems table. This expression can be evaluated
a C function using the API function ksk; see See “Example: Evaluating KSQL State-
ments” on page 55 for the way to evaluate KSQL statements within C functions.

Custom analytics are embedded in KSQL statements, where they are called with KS
syntax, as in

smooth[price,date]
20 Kdb Programmers Manual

Customizing Kdb Databases

pear.

y are
rs” on
Stored procedure evaluations usually make up the entire statement in which they ap
As a result, they can be called in a KSQL statement, as in

update_save['t', ('abc',27, 3.24)]

or in a KDBC remote procedure call statement; see “KDBC” on page 28.

Stored procedures are generally thought of in regard to transaction processing. The
also provide an effective way to manage Kdb gateway servers. See “Gateway Serve
page 30.
Kdb Programmers Manual 21

4 Starting and Managing Kdb Servers
e
 the
r a

 the
 con-

s.

lves do

N,
men-
The simplest way to start Kdb from a console is with the command

k db

The console then becomes a Kdb console, as indicated by the prompt

t>

Databases and individual tables can be loaded (see the load command in the KSQL Refer-
ence manual). SQL and KSQL statements can be evaluated (enter a statement at th
prompt and press Return). The active tables can be displayed in the Kdb Viewer (see
show command) and, from the Viewer, the Kdb process can become a web server o
TCP/IP server. The Kdb console is closed with double back-slash.

t>\\

Loading data and making the Kdb process a database server can also be done from
command line, and more. No matter what start command options are specified, the
sole still becomes a Kdb console where statements can be entered and evaluated.

The Kdb Startup Command

The general form of the Kdb command that starts a fully functional server is as follow

k db [-dsn] f [-P[n]] [-p[n]] [-l] [-r[h]p]

Square brackets mean that the item within need not be present; the brackets themse
not appear in actual commands. Every command must start with “k db ”. The meanings
of the items to the right of this prefix are listed below.

The ODBC flag -dsn

If this flag is present, then the name immediately to its right is a file DSN or user DS
which designates the data target of an OBDC connection. See the Microsoft NT docu
tation for details. After that, see www.kx.com/a/kdb/connect/odbc.txt for specific Kdb
information.
Kdb Programmers Manual 23

http://www.kx.com/a/kdb/connect/odbc.txt

Starting and Managing Kdb Servers

 on

tin-
 are

QL
y put-
ts.

b

n so,
, if

 to
The data source name f

If -dsn is not present then f holds the name of one of the following:

• A Kdb database file (file extension .kdb)

• A directory whose entries make up a Kdb database (see “Database Organization
Disk” on page 15).

• A KSQL script (file extension .t). A KSQL script initializes the database. It can
contain both KSQL and SQL statements, but the two statement types must be dis
guished. This is done by putting “$” in front of SQL statements; KSQL statements
the default in KSQL scripts.

• An SQL script (file extension .s). An SQL script serves the same purpose as a KS
script. The only difference is that KSQL and SQL statements are distinguished b
ting “$” in front of KSQL statements; SQL statements are the default in SQL scrip

• A Microsoft Access database file (extension .mdb). Each Access table becomes a Kd
table.

• A Microsoft SQL Server database (extension .mdf). The name of the database is
given, not the database file (they are usually the same, but not necessarily). Eve
the file extension .mdf for a SQL Server database file must be used. For example
pr.dbf is a SQL Server database file whose contents are the database named
prices , then the parameter f to the Kdb start command must be prices.mbf .
Each database table becomes a Kdb table.

• A dBase file (extension .dbf). These files result in one-table databases.

• An Excel file (extension .xls). Each worksheet in an Excel file contributes a table
the database.

• A comma-separated-value file (extension .csv) or a text file with tab-delimited fields
(extension .txt). These files generate databases with only one table.

The Web server port -P[n]

Specify this option to create a web server. Use -P to create a web server having the
default port number or -P 2080 to create a web server listening on port 2080. Any
24 Kdb Programmers Manual

The Kdb Startup Command

an be

e
y
er can

ery
g the
 actual
n

nse-

nsac-

llow-

gular
 See

proce-
 error
een
authorized port number can be used. The default port number is 80. A Kdb server c
both a web server and a TCP/IP server.

The TCP/IP port -p[n]

Specify this option to create a TCP/IP server. Use -p to create a TCP/IP server having th
default port number or -p 2001 to create a TCP/IP server listening on port 2001. An
authorized port number can be used. The default port number is 2001. A Kdb serv
be both a TCP/IP server and a web server.

The transaction logging flag -l

If this flag is included then a transaction log is maintained and saved to disk after ev
transaction, i.e. every request that changes the data. Log items are triples containin
timestamp of when the request was received, the user who sent the request and the
message. The log is replayed by doing the following for each log item, in the order i
which the original transactions were received: set current_time to the timestamp in the
log item, set current_user to the user in the log item and execute the transaction. Co
quently, any reference to current_time and current_user will be the same as when the
transaction was originally evaluated.

This default logging applies only to one-file memory databases (file extension .kdb).
The log file is part of the database, but only the log file is saved to disk as part of tra
tion processing.

The database is saved to disk (and the log is reset to the empty log) whenever the fo
ing Kdb save statement is executed.

save''

Since the log is part of the database it is important to execute this statement on a re
schedule, depending on the transaction rate, so that the log does not get too large.
“Managing Transaction Logs” on page 30 for a way to do this automatically.

Rollbacks

Rollbacks occur because the database is in an inconsistent state. That is, a stored
dure is executing a transaction when, after some modifications have been made, an
occurs. If any modifications have not been done at this point then those that have b
Kdb Programmers Manual 25

Starting and Managing Kdb Servers

pplied
cedure

Roll-
eck-

ror

 copy
t-up
ro-
er are

ning.

ta-
tabase
aves

s then

y a
ase.
 then
e, the
completed must be undone. To guarantee a consistent state the transaction log is a
to saved database, thereby returning the database to the state before this stored pro
was executed. This can be very time consuming when the transaction log is large.
backs should be avoided wherever possible, and the way to do that is with careful ch
ing in stored procedures to anticipate potential errors. If a stored procedure cannot
proceed with the expected updates then the recommended exit is with a 'rollback' er
message, indicating to the sender that the updates have failed.

Replication server location -r[h]p

Use this flag to designate the host and port of a replication server, which maintains a
of the active database. Every message sent to the main server (the one whose star
command contains the -r flag) that causes the database to be modified is sent asynch
nously to the replications server. As a consequence, updates on the replication serv
done after the main server.

If the host computer is not specified then it is the one on which the main server is run
(Running a replication server on the same host can be useful when the host has two
CPUs). The main server and the replication server must be started with identical da
bases. If both run on the same computer then both can be started with the same da
file because their in-memory copies will be different and the replication server never s
the database.

The replication server should be started first, as a TCP/IP server. The main server i
started with a -r option value identical to the -p option value in the replication server
startup command.

Starting a Shuffle Database

According to “Database Organization on Disk” on page 15, there is nothing in the wa
splayed database is organized on disk to distinguish it as a memory or shuffle datab
The distinction is made when the Kdb server is initialized. If the database is splayed
the -s indicates that the splayed tables in the database are to be shuffled. Otherwis
database is treated like a memory database.
26 Kdb Programmers Manual

Connecting to a Kdb Server

upports
ce
 Kdb
efault
s of

hey
ta

n the
 be sent

he
BC.
Connecting to a Kdb Server

This section describes the ways clients can connect to Kdb database servers. Kdb s
both JDBC and ODBC, the well-known, standard interfaces. There is also an interfa
that is specific to Kdb called KDBC. Both KSQL and SQL statements can be sent to
servers by all three interfaces. The only difference is that SQL statements are the d
for JDBC and ODBC clients, while KSQL is the default for KDBC clients. Statement
the non-default kind must start with “$” at the front.

Java and Visual Basic are good implementation languages for Kdb clients because t
and K, the implementation language of Kdb, share the same basic self-describing da
types; see Table 4.1, below.

KDBC is simpler than JDBC and ODBC because it has just one entry point, is richer i
kinds of messages that can be sent and is faster because large amounts of data can
in a single message. Both JDBC and KDBC use KDBC in their implementations. T
KDBC interface is available to Java and C clients as an alternative to JDBC and OD

TABLE 4.1 Data Types

Ka/Kdbb

a. See “Data Types” on page 46 for more information on the K data types.

b. The Kdb Date type corresponds to K (julian) int, while Time and Times-
tamp correspond to float.

Java Visual Basic/Excel

1 (int) Integer Long

2 (float) Double Double

3 (byte) Byte Byte

4 (symbol/varchar) String String

6 (null) null Null

0 general list Object[] Variant()

-1 int list/column int[] Long()

-2 float list/column double[] Double()

-3 (byte list/varbinary) byte[] Byte()

-4 varchar list/column String[] String()
Kdb Programmers Manual 27

Starting and Managing Kdb Servers

 Kx

ains

C

ingle

ed

ents.

i-
mple:
amed
ents.
JDBC

The Kdb JDBC driver is a type-IV, pure Java, driver. The driver can be found on the
website, at www.kx.com/a/kdb/connect/jdbc. Download the file jdbc.zip and unzip its
contents into the k subdirectory of CLASSPATH. The Kx website directory also cont
examples.

ODBC

The Kdb ODBC driver is a level I driver. See the Kx website for information on ODB
front ends, in particular the files at www.kx.com/a/kdb/connect/odbc/ and the tutorial at
www.kx.com/technical/tutorials/excel/.

KDBC

KDBC consists of entry points to open and close connections to Kdb servers and a s
entry point for sending messages. Every KDBC message is in the form

("function",arg1,arg2,...)

where there are as many argn’s as there are function arguments. The function is a stor
procedure defined on the server. Consequently KDBC messages are remote procedure
calls. Note that a KSQL or SQL statement can be used in place of "function" because such
a statement is executable; and therefore can be considered a function with no argum
For example,

("select sum qty by p from sp")

The parentheses can be dropped in this case.

The file www.kx.com/a/kdb/connect/kdbc.txt contains both a Java and C version of a cl
ent accessing a Kdb database with ODBC. The C version can also be found in “Exa
Accessing a Kdb Server with KDBC” on page 54. In the Java version a Java class n
c is created with a constructor that takes the host and port of the Kdb server as argum
KSQL statements can then be sent to the server, for example

Object[]r = (Object[])c.k("select sum qty by p from sp");
28 Kdb Programmers Manual

http://www.kx.com/a/kdb/connect/jdbc
http://www.kx.com/a/kdb/connect/odbc/
http://www.kx.com/technical/tutorials/excel/
http://www.kx.com/a/kdb/connect/kdbc.txt

Connecting to a Kdb Server

he

nect
L

n

hat

ts are

 calls

 for
col-
hey
,
 col-
The result r contains three lists of column names, column data, and column types. T
connection to the server is closed with c.close() . SQL statements can also be sent,
but since this is a KSQL interface, they must begin with “$”.

The C version is organizationally the same, except that K functions are called to con
to the server and close the connection, and a K function is defined for executing KSQ
expressions on the server and receiving the results. See “K Language Essentials” o
page 35 and chapter “The C - K Interface”.

Remote Procedure Calls

The Java method k used to evaluate the KSQL expression above is one of several t
together implement a Java remote procedure call (RPC, for short). For example, if foo is
a stored procedure on the Kdb server that takes to arguments, and if those argumen
created in the Java client as A and B, then foo can be executed as follows.

(Object[])c.k("foo",A,B);

See “Example: A Remote Procedure Call” on page 55 for making remote procedures
from a C client.

Bulk Updates

Individual updates to databases are done with KSQL and SQL update statements. Bulk
updates are done with the KSQL insert function, which can be executed with the follow-
ing KDBC remote procedure call.

("insert","table",bulk_data)

The insert function takes two arguments, the name of the table ("table") and the data to be
inserted (bulk_data). The bulk data is a rectangular arrangement of data with one item
each column in the named table. The items must be in the same order as the table
umns, i.e. the order when the table was defined or, equivalently, the order in which t
appear as a result of a KSQL select from table statement. If the RPC is sent from a K or C
the bulk data can be organized as a K dictionary whose entry names match the table
umn names, in which the column order of the data is not relevant.
Kdb Programmers Manual 29

Starting and Managing Kdb Servers

d the

ing on

 data-
easons
sts are
d as
). A
rver

ist
 distri-

 from
Managing Transaction Logs

If default logging is in effect on the Kdb server then the database is saved to disk (an
log is reset to the empty log) be executing the following Kdb save statement save'' (“The
transaction logging flag -l” on page 25). The corresponding remote procedure call is

("save","")

A dedicated client can execute this RPC as a scheduled task with frequency depend
the level of activity on the database.

 Gateway Servers

A gateway server is a intermediate process that receives client requests as if it is the
base server and passes them along to an actual database server. There are many r
for using a gateway server. For example, a gateway server can require that all reque
by way of remote procedure calls, so that all requests can be monitored and modifie
needed. (Even ad hoc queries can be submitted as arguments to stored procedures
gateway server can provide custom management of transaction logs or, as a Kdb se
itself, provide default logging for a shuffle or parallel database. Finally, to keep the l
short, a Kdb gateway server can employ a secure memory database for access and
bution control for other servers, using its own access and user tables for initial screening
(see “Managing User Access” on page 17).

See “Inter-process Communication” on page 37 for sending requests to Kdb servers
a Kdb gateway server.

Kdb gateway servers provide customized control over Kdb database systems.
30 Kdb Programmers Manual

5 Kdb Topics
ent
ly

t is esti-
nce

-

m-

ill be
er col-
lected

that
For
alue
nt.

ions.
Estimating Performance in Memory Databases

The way to estimate Kdb query performance is as follows. Every KSQL query statem
can be broken down into a collection of base statements, each of which uses one and on
one computation in the source statement. The performance of each base statemen
mated by timing its evaluation. These estimates are summed to produce a performa
estimate for the statement. The example in this section is a select statement. but the meth
odology applies to other queries as well, in particular update - by statements (see the
KSQL Reference manual).

An obvious question comes to mind: Why not simply time the source statements the
selves? The answer is that base statements are generic. For example, if quantity>100
appears in one KSQL statement and its base statement is timed, then that number w
the same for any other statement containing a relational function applied to an integ
umn. Consequently, timings for a comprehensive set of base statements can be col
in order to estimate the performance of any source statement of interest.

An Example

The example is from the trade database defined by the Kdb script trade.t that comes with
the Kdb download. Open that script in an editor and you will see (as of this writing)
the integer n, which defines the number of rows in the trade table, is set to 100,000.
convenience, that value has been changed to 1 million here, even though the new v
may be too large for the evaluation version of Kdb. The following is the test stateme

select sum amount by stock.industry, date.month from trade

There are three computations in this statement, a two-dimensional aggregation (industry,
month), a table join (stock.industry) and a field extraction from a date column
(date.month). As a result, there are three base statements isolating these computat

select sum amount by stock, date from trade

select stock.industry from trade

select date.month from trade
Kdb Programmers Manual 31

Kdb Topics

lumns
mn

aluat-
 the

ere
ing six
main-
lisec-

 of its
ate is

h gives

eriph-
ed in

ea that
nt with
ua-

s,
 for
 +
Note that the first base statement is also an aggregation on two columns, but the co
require no computations for their formation. The last two statements isolate the colu
computations in the by phrase of the test statement.

KSQL statements can be timed by putting a colon to the left of the statement and ev
ing it. The CPU time (in milliseconds) used in the evaluation is then displayed below
statement. For example, time the first base statement as follows.

:select sum amount by stock, date from trade

The result is 640 milliseconds. (As in chapter “Design and Performance”, all timings w
done on the author’s desktop computer. The numbers given here are the result of do
independent evaluations, throwing out the smallest and largest and averaging the re
ing four.) The results for the second and third base statements are 120 and 260 mil
onds, respectively.

The estimated CPU time required for the test statement is the sum of the CPU times
base statements. In this case, it is 640+120+260 = 1020 milliseconds. (That the estim
almost exactly 1 second is purely coincidental). (A quick check on this number is
obtained by timing the test statement in the same way as the base statements, whic
1010 milliseconds).

Note that execution time depends only on the computations in a statement, not on p
eral issues such as the number of columns in the reference table (i.e., the table nam
the from phrase).

Base Statements are Generic

These three base statements in the above example provide further support for the id
base statements are generic. That is, 640 milliseconds applies to any other stateme
an aggregation on two columns, 120 milliseconds to any table join (dot notation eval
tion) based on a varchar column and 260 milliseconds to any date field extraction.

Other Base Statements

Timings of other base statements using the 1 million row trade table are as follows: 110
milliseconds for aggregations on one column, 50 milliseconds for arithmetic function
relational functions, logical functions and string (varchar) match, and 60 milliseconds
a select - where selection in which relatively few rows are chosen and 50 milliseconds
32 Kdb Programmers Manual

Estimating Performance in Memory Databases

st

der of

ow

e
e is
110 milliseconds per column (220 milliseconds for floating-point columns) where mo
rows are chosen.

Search Phrases

Searches require special attention. KSQL searches are table selections defined by where
phrases that are simple equals expressions, as in

select from trade where stock='aaa'

and table indexing expressions, as in

stock['aaa'].industry

Search evaluations are optimized when the reference table is sorted in ascending or
the search column, as in

'stock' asc 'trade'

Once this sorting is done, the search takes only one or two milliseconds, no matter h
many rows there are in the reference table.

where Phrases

A where phrase that uses the punctuation symbol “,” in place of and is executed differ-
ently than the phrase with and. For example, if the where phrase is

(stock='aaa')and date>date'06/01/98'

then the search expression stock='aaa' takes 50 milliseconds, the relational expression
takes 50 milliseconds and the logical and expression takes another 50. Add to those th
60 milliseconds for a selection in which only a few rows are chosen, and the estimat
220 milliseconds per million rows for a selection based on this where phrase.

Note that this number does not change when the trade table is sorted by stock because the
same evaluations must be done.

Now consider the where phrase

stock='aaa', date>date'06/01/98'

which is a cascading where phrase. First the selection based on stock='aaa' is executed,
and then, on that result, the selection based on date>date’06/01/98' is done. If the trade
Kdb Programmers Manual 33

Kdb Topics

ction
an
-

 com-
 the

bove
proxi-
ven by

esti-

ble

ts that

ificant
table is sorted by stock then the (optimized) selection based on stock='aaa' takes only 1 or
2 milliseconds. The result of this selection has about 150,000 rows, to which the sele
based on date>date'06/01/98' is applied. The computational effort is somewhat less th
selecting relatively few rows from a million, giving a total cost estimate of 60 millisec
onds.

The Performance Unit MRPS

A performance measurement unit that combines execution time with what is actually
puted is million-rows-per-second, or MRPS. The rows refer to the reference table of
KSQL statement.

CPU milliseconds can be converted to MRPS by the KSQL expression

N/(1000*MS)

where N is the number of rows in the reference table and MS is milliseconds. In the a
example, N is 1000000 and the MRPS values for the three base expressions are (ap
mately) 1.6, 8.3 and 3.8. The estimated MRPS value for the test statement is then gi

1/sum 1/(1.6, 8.3, 3.8)

which is approximately 0.99 (a purely coincidental closeness to 1). The result is an
mated 1 million rows per second for the test statement.

SQL Performance

Kdb ANSI-SQL is translated to KSQL for evaluation and consequently has compara
performance.

Estimating Temporary Storage Requirements

The methodology for estimating performance can be adapted to temporary storage
requirements, that is, the virtual memory needed to create and hold temporary resul
exist during statement execution. Since virtual memory is not unlimited and memory
databases also occupy virtual memory, temporary space requirements could be sign
for tables with very long columns.
34 Kdb Programmers Manual

K Language Essentials

t be
y
at

g
orst
r tem-
 per

r

-
in this
r mil-

a sig-
t fit in
st all
 the
 the

 char-
para-
In the base statements of the above example, both stock.industry and date.month are tem-
porary integer arrays with 1 million items each. Both are temporary results that mus
available for the by phrase. In addition, the by phrase requires a temporary integer arra
for its result and, presumably, another for internal computational use. This means th
four integer arrays with 1 million items each are required during the by phrase evaluation.
When the by phrase evaluation is complete only the result must be maintained, leavin
one temporary integer array of 1 million items. The aggregation result, in the very w
case, occupies another integer array with 1 million items. Consequently, at most fou
porary integer arrays are required at any one time, which is 16 megabytes of storage
million rows.

A where phrase in a select statement may reduce temporary storage requirements. Fo
example, consider the cascading where phrase from above.

stock='aaa', date>date'06/01/98'

Executing stock='aaa' requires at most a 1 million row integer array for its result. How
ever, all other temporary storage requirements are now reduced by more than 80%
example. The total temporary storage requirement is now less than 8 megabytes pe
lion rows.

Estimating Real Memory Requirements

Having enough real memory to avoid page swapping during statement execution is
nificant performance issue. In order to run at optimal speed, every computation mus
real memory. In particular, the arguments and result of every function execution mu
fit in memory. The real memory requirement to evaluate a statement is the same as
temporary virtual memory requirement; the temporary virtual memory simply overlays
real memory.

K Language Essentials

Data Types

K has the same basic data types as Kdb, integer, floating-point, symbol (varchar) and
acter (varbinary). K vectors do not require surrounding parentheses and comma-se
tors between items; spaces are used for separating numeric items. For example,

x:1 3 43 5
Kdb Programmers Manual 35

Kdb Topics

ity
rit-

f

of lists
c-

ta for-

 of
-
lled a

th
defines an integer vector with four items,

y:1 3.4 5.5

defines a floating-point vector with three items, and

z:`abc `xz.s34 `"s*4/5"

defines a symbol vector with three items (the spaces between items are for readabil
only). Symbols in K are denoted differently than KSQL varchar items. A symbol is w
ten with a leading backquote followed by its contents which, in general, must be sur-
rounded by double-quotes. For example, `"s*4/5" . The double-quotes are not part o
the data. Symbols that represent valid K names do not need double-quotes, as in
`xz.s34 and ̀abc .

Finally, a character vector is written the same as a KSQL varbinary, as in

w:"1224 w 34th, New York"

The items of vectors are called atoms, which are valid data objects. Vectors are special
forms of lists whose items are all atoms of the same data type. In general, the items
can be atoms of mixed types or other lists or any type of K data object, including fun
tions. The items of a general list are separated by semi-colons in K, as in

(1 2 3; (`a`b;4.127)

which is a two-item list whose first item is the integer vector 1 2 3 and whose second item
is also a two-item list, consisting of the symbol vector `a`b and the floating-point atom
4.127 .

Note that the results of expressions executed in a Kdb session are displayed in K da
mat, not Kdb format.

The K Tree

All data in an active K environment is organized hierarchically in a tree. Every node
the tree is a data object called a dictionary. Because of similarities with file systems, dic
tionaries are also called directories. A dictionary that plays a special role is often ca
context. For example, any dictionary can be made the active context, which means that
references to data within that node can be made relative to it and do not need full pa
specifications.
36 Kdb Programmers Manual

K Language Essentials

 the

xam-
-

of the

o

s.

m

server.
d
 an asyn-
ecuting
 a

mes-

d
led a
The top level dictionary is denoted simply by dot (.). There are several dictionaries
within dot that appear by default when a K or Kdb session is started. For example,
.k dictionary is the default active context. In a Kdb session, this dictionary holds the
active database. Kdb tables are K dictionaries. A Kdb table called trade can be refer-
enced in K by .k.trade or .k[`trade] .

Attributes

Every data object on the K tree has an associated dictionary called its attribute dictionary.
Some attributes have default meanings; all others can be application specific. For e
ple, the attribute named t is the default trigger attribute. If defined, the value is a charac
ter vector holding a K expression that is automatically executed whenever the value
owner changes. For example, the attribute dictionary of a K object abc is denoted by
abc. (i.e., abc -dot with no spaces) while reference to a specific attribute requires tw
dots, as in abc..t for the trigger on abc . The object abc is the owner of its attribute
dictionary. See “Column Attributes” on page 19 for the default attributes of Kdb table

A dictionary is displayed as a series of triples, one for each item consisting of the ite
name as a symbol, its value and its attribute dictionary).

Inter-process Communication

A client can send a synchronous or an asynchronous message to a gateway or Kdb
Synchronous messages are called get messages and asynchronous messages are calleset
messages. The client sends a synchronous message when a result is expected and
chronous message otherwise. In effect, a synchronous message corresponds to ex
a function on the server and waiting for the result. For example, a client should send
KSQL select statement synchronously because a result is expected. Asynchronous
sages are appropriate when no response is expected.

Connecting

The monadic primitive function denoted by 3: is used to connect to a gateway or Kdb
server. The argument to this function is a list p of connection parameters that is describe
in the chapter “Starting and Managing Kdb Servers”. The result of the function is cal
handle, which is used whenever messages are sent to that server. For example,

h :3: p

defines the handle h. The connection is successful if no error is reported.
Kdb Programmers Manual 37

Kdb Topics

es,
 right

he

nd a

ed
Sending and Receiving

The dyadic primitive functions 3: and 4: send asynchronous and synchronous messag
respectively. The left argument of either one is the handle for the connection and the
argument is the message. The message can be any K object that is meaningful to t
recipient. In the following example, the K object r holds the result of a select statement
sent to a Kdb server.

r: h 4: "select avg price by stock from trade"

The result r is a triple containing a list of column names as symbols, a list of values a
list of column data types as symbols. A stored procedure sp on the server with arguments
A, B and C can be evaluated as follows.

s: h 4: (‘sp;(A;B;C))

An asynchronous message can only be sent by K clients.

Closing a Connection

If h is a handle created by monadic 3: (see “Connecting”, above), then

3: h

closes the connection.

File Management

Any K object that does not contain function definitions can be saved to disk and load
(i.e., mapped) from disk. The expression to save the object o at path location p is

p 1:o

The expression to map the K object on disk into the K workspace as the K object o is

o: 1: p

The path location variable p is a character vector, as in

p:"c:/k/data/item2"
38 Kdb Programmers Manual

K Language Essentials

e used
e dou-

s on
parated
st
 that

to
hich
 the K

c

 def-
 of
Slashes can always be used in path specifications, even when back-slashes must b
outside K. In that case you can also use back-slashes in K, but you must always us
ble back-slashes, as in "c:\\k\\data\\item2".

A K object o can be appended to an existing K object stored on disk with 5:. For example,
if the character vector p defines the path to a K list with n items is stored on disk, and if o
is a K list with m items, then

p 5: o

appends o to the stored list to create a stored list of n+m items.

Functions

A K function definition is a series of K statements surrounded by braces. Statement
the same line are separated by semi-colons. Statements on successive lines are se
by a new-line. The result of the function is – in the default case – the result of the la
statement in the definition, i.e. the statement immediately followed by the right brace
marks the end of the definition.

This examples in this manual are one-statement functions, which in K are sufficient
define complex computations. The update function in “The tpcb Example”, below, w
can be found in the referenced Kdb script on the kx website, has several lines. See
Reference Manual on the kx website for the definitions of the K primitives used in that
function.

The function {+/x} sums the items of its argument x and {x+y} sums its arguments x and y,
item-by-item if either argument is a list. The name x is the default argument of a monadi
function (i.e., one argument), while x and y are the default argument names of a dyadic
function. Other names can also be used, as in {[aa] +/aa} and {[al;ar] al+ar} . Functions
are given names with ordinary assignment, as in agg:{+/x} and sum:{x+y}. A monadic
function can be evaluated by agg[a] for a numeric list a, or simple agg a. Evaluation of a
dyadic function is of the form sum[a;b].

K and Kdb

K functions can be defined in K scripts (file extension .k) and loaded into Kdb by loading
K scripts within Kdb scripts. They can also be defined in Kdb scripts by preceding K
initions with the back-slash escape character. The following example illustrates the use
back-slash for indicating K definitions in Kdb scripts.
Kdb Programmers Manual 39

Kdb Topics

-
hes.
w

itive
e

r

the
The tpcb Example

The script http:www.kx.com/a/kdb/examples/tpcb.t from the kx website is used in “Trans
action Processing” on page 12 to illustrate the effect of grouping transactions in batc
Various timings are given there for various batch sizes. In this section we will see ho
those timings are done.

First of all, download the script tpcb.t. This script is loaded into a timing script (say
time.t) with the Kdb load statement

load'tpcb.t'

(see the KSQL Reference manual). The update function defined in the script is the K
function named up. It takes four integer vector arguments called account id, teller id,
branch id and the amount by which the corresponding quantities are increased (pos
amount) or decreased (negative amount). Fifty thousand random transactions can b
defined by the following KSQL statements:

ai:50000 rand account.id

ti:50000 rand teller.id

bi:50000 rand branch.id

x:50000 rand 100.0

Then

:up[ai, ti, bi, x]

gives the CPU time for fifty thousand transactions done in one batch.

We can simulate five thousand batches of ten transactions each as follows. The K reshape
function is denoted by #. The K expression

\AI:5000 10#ai

reshapes the items in ai into a list AI with 5000 items, each of which is an integer vecto
with 10 items. The leading back-slash is an escape character that is required in a KSQL
or SQL script to indicate that what follows is a K expression. Do the same thing for
other vectors.

\TI:5000 10#ti

\BI:5000 10#bi
40 Kdb Programmers Manual

http://www.kx.com/a/kdb/examples/tpcb.t

K Language Essentials

 (and

tions

 the

ts
ht is

\X:5000 10#x

Each set of corresponding items in the new lists, say AI[i] , TI[i] , BI[i] and X[i] for an
index i, represents a batch of ten transactions and

up[AI[i], TI[i], BI[i], X[i]]

evaluates the ith batch of ten transactions. All five thousand batches can be evaluated
timed) in a single KSQL statement as follows.

:up Each[AI, TI, BI, X]

That is, Each is an operator that applies up to every set of corresponding items in AI , TI ,
BI and X, that is, to every transaction batch. Use 10000 5 to reshape for five transac
per batch and 50000 1 for one transaction per batch.

Each Operators

The K each operator is denoted by single-quote. The K expression corresponding to
above KSQL Each expression is

\\t up'[AI; TI; BI; X]

The leading back-slash indicates that this is a K expression (assuming we’re still in a
KSQL or SQL script). It is followed by \t , the K command to time the expression to i
right (replacing the leading colon in the KSQL expression). The expression to the rig
up'[AI; TI; BI; X] , which is the equivalent to the KSQL statement
up Each[AI, TI, BI, X] .

There are variations of each called each-left and each-right; they are denoted \: and /: ,
respectively, in K and named Eachleft and Eachright in KSQL. For example, connection
handles are integers (see “Connecting”, above). If H is a vector of connection handles to
more than server, the following K expression sends the message m to every server whose
connection is in H.

H 4:\: m
Kdb Programmers Manual 41

6 Database Topics
usly:
 that
ulta-
itself is
le pro-

ulti-
hen
ple
to any
ulta-

te o a
lti-

U-
CPU

 Kdb
 files
ads

r.

ing on

ts take
”

Multi-Threading

There are two ways for a database product to execute multiple requests simultaneo
multiple threads and multiple servers. Threads are so-called light-weight processes
require less system resources than ordinary processes. A database server that sim
neously executes simultaneous multiple requests uses multiple threads. The server
an ordinary process; multiple servers executing simultaneous requests means multip
cesses, not multiple threads.

Assuming that everything is running on one computer, neither multiple threads nor m
ple servers have much effect on through-put unless there are multiple CPU units. W
there are multiple CPUs, many database products (including Kdb) recommend multi
servers (one per CPU) where, for applications doing updates or inserts, all changes
particular table are routed through one server to avoid costly synchronization of sim
neous modifications.

Kdb servers do not employ multiple threads. The reason is that a high through-put ra
single CPU, together with the multiple server alternative for multiple CPUs, place mu
ple threads at a low priority. That is, Kdb installations strive to make the servers CP
bound (hence the high through-put rate), in which case multiple threads on a single
have a negligible effect on through-put. The example below illustrates this point.

This is not to say that multiple threads could never be useful in Kdb servers and that
servers will never be multi-threaded. Since active Kdb databases consist of mapped
and multiple threads can share mapped files, there are situations where multiple thre
could provide an easy and effective way to exploit multiple CPUs with a single serve

Example

This example consists of two simultaneous requests of a single database server runn
a host computer with one CPU. Suppose the two requests would use, respectively, X and Y
CPU seconds if executed independently. On a single-threaded server the two reques
X+Y total CPU seconds and one goes first while the other waits. Thus “elapsed time
looks like X or Y seconds for the one that goes first and X+Y seconds for the one that waits.
Kdb Programmers Manual 43

Database Topics

e
e

n-
st
rt
ome
On a multi-threaded server they also take X+Y total CPU seconds, but they run at the sam
time. Assuming that they equally share the CPU while both are running, elapsed tim
looks like 2*min(X,Y) for one request and max(X,Y)+min(X,Y) for the other. In particular,
if X equals Y the elapsed time of both requests is 2*X with multiple threads, while in the
single-thread case only the one executed last has elapsed time 2*X; the one executed first
has elapsed time X. On the other hand, if X is much greater than Y the elapsed time of the
shorter-running request is only 2*Y seconds with multiple threads, but if the longer-run-
ning request goes first in the single-thread case, it is the much greater X+Y seconds. One
can generally conclude that elapsed time is more uniformly correlated to resource co
sumption when multiple threads are used. However, when requests are executed fa
enough then other factors dominate total elapsed time (for example, network transpo
time), the different effects between single-threadedness and multi-threadedness bec
negligible.
44 Kdb Programmers Manual

7 The C - K Interface
he
ns in
 pro-

age K
ble.
rom
fore

 NT
Introduction

This chapter defines the API for calling C functions from K and K functions from C. T
C functions that make up the API are listed in the table below, together with the sectio
which they are described. C functions called from K must manage K arguments and
duce K results. C programs that call K functions must create K arguments and man
results. The API functions for managing K data are listed in the first 5 rows of the ta
The next-to-last row lists API functions for calling K functions and accessing K data f
C. The mechanism for calling C functions from K is part of the K language and there
does not appear in this table; see “Linking to C Functions in K”.

Compilation

C functions that will be called from a K program must be defined as entry points in an
DLL (file extension .dll) or a Linux SO (file extension .so).

K <-> C Interface Functions

C Function Section Reference

gi , gf , gc , gs , gn , sp Creating K Atoms, Data Types

gtn , gnk , gp , gpn , gsk Creating K Lists

Ki , Kf , Kc, Ks Accessing and Modifying K Atoms

KI , KF, KC, KS, KK, kap Accessing and Modifying K Lists

dj , jd Date Conversion

kerr Signalling a K Error

sdf , scd Registering K Event Loop Callbacks

ksk , sfn Calling K From C

cd , ci Managing Reference Counts
Kdb Programmers Manual 45

The C - K Interface

hen

not
Header and Lib files

These files can be found at www.kx.com/a/k/connect. They are K20.lib , K20.h and
K20x.h . Include K20x.h in your C files and use K20.lib for linking. There are brief
comments in K20.h and K20x.h summarizing the contents of this document.

The C Structure of the K Data Object

The internal format of K data objects is defined in K20.h by the recursive C-structure
named K. The members of the K structure are

c – reference count of the object

t – the data type of the object

n – the number of data items when the object is a list or dictionary

The structure members are primarily for reference. However, there are occasions w
you must manage the reference count (see “Managing Reference Counts”).

Data Types

The data types of K objects are represented by integer values, as follows.

 6 – atomic nil

 5 – dictionary

 4 – symbol atom, i.e. sp (null-terminated character string)1

 3 – character atom (unsigned)

 2 – double atom

 1 – integer atom

 0 – general list whose items are other K objects

-1 – integer list (vector)

-2 – double list (vector)

-3 – character list (vector)

-4 – symbol list (vector), i.e. each item is sp (null-terminated character string)1

1. The API function sp internalizes its character string argument in K for optimized searches, but does
create a K object.
46 Kdb Programmers Manual

http://www.kx.com/a/k/connect/

Creating K Atoms

.

u-

e
. For

tor

 a C
Creating K Atoms

There are atomic constructors for each type of K atom. They are

gi – generate an integer atom, as in gi(3) or gi(i) for int i ;

gf – generate a floating-point atom, as in gf(3.5) or gf(a) for double a;

gc – generate a character atom, as in gc('c') or gc(a) for unsigned char a;

gs – generate a symbol atom, as in gs(sp("price")) or gs(sp(s)) for
char *s ;

gn – generate the nil atom, as in gn() .

Creating K Lists

There are several list constructors. The most general is gtn(type,count) . For exam-
ple, gtn(-1,5) creates an integer vector of length 5. Valid types are 0, -1, -2, -3, -4
Valid counts are non-negative integers.

The constructor gnk creates a list from its arguments. It is useful for small lists, partic
larly for building argument lists to K functions called from C. The first argument to gnk
is the number of arguments that follow, which can be from zero to eight. It is also th
length of the result list. The remaining arguments are the items of the result, in order
example,

gnk(5,gi(2),gf(3.4),gc('a'),gs(sp("abc")),gn());

is a list of 5 items. An argument other than first can be any K object.

Creating Character Vectors

A K character vector can be created from a null-terminated string using the construc
gp , as in

gp("abcd");

The constructor gpn is used to select a specific number of characters from the front of
character vector or string, as in

gpn(cv,10);

The result is a K character vector of length 10.
Kdb Programmers Manual 47

The C - K Interface

ary
eral
Creating Dictionaries

A K dictionary is a list of type 5 consisting of symbol-value pairs. A dictionary can be
created with the API function gtn for creating lists; gtn(5,n) is a dictionary with n
entries.

The API function gsk is a useful tool for creating symbol-value pairs. For example,

gsk("abc",gf(2.71));

The access function for general lists, KK, can be used to access and replace diction
items, just as if the dictionary is a list of type 0. See “The Access Function for a Gen
List”. The API function for appending to a general list, kap , can be used to append a
symbol-value pair to a dictionary. See “Appending to a K List”.

Accessing and Modifying K Atoms

If x is an integer atom then Ki(x) is a C int .

If x is a floating-point atom then Kf(x) is a C double .

If x is a character atom then Kc(x) is a C unsigned char .

If x is a string atom (symbol) the Ks(x) is a C char* .

The value of an atom can also be modified, as in

Ki(x)=2;

and

Ks(x)=sp("abc");

Accessing and Modifying K Lists

If x is an integer vector then the i th item KI(x)[i] is a C int .

If x is a floating-point vector then the i th item KF(x)[i] is a C double .

If x is a character vector then the i th item KC(x)[i] is a C unsigned char .

If x is a string (symbol) vector the i th item KS(x)[i] is a C char* .

A list item can also be modified, as in

KF(x)[2]=3.5;
48 Kdb Programmers Manual

Calling K from C

,

r

be exe-

g,

am-
The Access Function for a General List

The access function for a general list is denoted by KK. It applies to K objects of type 0.
The i th item of a K object x of type 0, KK(x)[i] , is also a K object. If, for example,
that item is an integer vector, then its items can be accessed by KI(KK(x)[i])[j] .

Appending to a K List

The API function for appending to a K list is kap . Use this function if the length of the
result is not known when the list is created. Start with an empty list, as in

x=gtn(-1,0);

which is an empty integer vector. Whenever a new item to be appended is available
append it to x with kap . For example, append the value of C int a to x as follows.

kap(&x,&a);

If y is a general list (type 0) then the second argument of kap can be a pointer to any othe
K object; that K object becomes a new item of y. kap is item-to-list append, not list-to-
list.

Calling K from C

K can be started from a C program, K scripts can be loaded and K expressions can
cuted with results returned to C. The API function that does all this is ksk .

First of all, K must be initialized with ksk("",0) . Note: this function always returns a
result. If the result is meaningless it can be immediately freed using the API functioncd ;
see “Managing Reference Counts”. You will often see C statements, like the followin
that call ksk and immediately free the result with cd .

cd(ksk("",0));

The character string argument can hold any valid K expression or command. For ex
ple,

r=ksk("2+3",0);

or

cd(ksk("\\l script.k",0));
Kdb Programmers Manual 49

The C - K Interface

func-
or

, in
at is
ram

t to
rgu-
nc-
The character string can contain a K function definition or the name of an existing K
tion, in which case the second argument must be K list of the function arguments. F
example,

ksk("{x+y}",gnk(2,gi(2),gi(3)));

C calling K calling C

It is conceivable that an application has a C main program that calls K functions that
turn, call C functions. In this case it is not necessary to compile a separate library th
linked into K. The functions to be called from K can be compiled with the main prog
and registered as callbacks with K from the main program.

For example, suppose the C function is

K f(K x,K y){Ki(x)+Ki(y);}

f can be registered in K using the API function sfn , as follows.

sfn("g",f,2);

where g is the name by which f is called from K and 2 is the number of arguments of f .
The K function can now be called with ksk .

ksk("g[2;3]",0);

or

ksk("g",gnk(2,gi(2),gi(3)));

Linking to C Functions in K

The primitive dyadic K function 2: defines links to C functions. A result of 2: is a K
function that, when called, calls the C function to which it is linked. The left argumen
2: names the DLL or SO file (with path) in which the C function is found. The right a
ment is a pair; its first item is a character atom or vector holding the name of the C fu
tion and its second argument is the number of arguments in the C function.

For example, the C function

K f(K x,K y){....}
50 Kdb Programmers Manual

Signalling a K Error

atch

the
 clean
ts”.

neces-
-

ted in
ed

hat
er
ust be
 to 0,

 pro-
r in
is linked into K with

g:obj 2: ("f"; 2)

The K program that calls f is named g.

It is up to the programmer to make sure that the arguments to the K function exactly m
the arguments of the C function.

Signalling a K Error

A K error can be signalled by a C function called from K with API function kerr . For
example,

if(0>=x->t)return kerr("x must be an atom");

The effect, which is to signal an error in K with the message “x must be an atom”, is
same as if the error was signalled by a K function. Note that it may be necessary to
up work in progress just before an error is signalled; see “Managing Reference Coun

Managing Reference Counts

Reference counting is a standard technique in data management to avoid making un
sary copies of data. When writing C programs that create K objects, there are circum
stances when you must manage the reference counts of those objects.

Every K object has reference count 1 when it is created. If a K atom or vector is crea
C function that is called from K and returned as that function’s result, it will be manag
by K from the point of return onwards. However, if temporary K atoms and vectors t
are not part of the result have been constructed, or if a K atom or vector result is und
construction when an error is signalled, then the reference counts of those objects m
decremented before the function returns. Their reference counts then decrease by 1
indicating that the storage allocated to these objects can be freed.

Similarly, when a K function is called from a C program its result is returned to the C
gram. The reference count of this result should be decremented when it is no longe
use.

Reference counts are decremented by the API function cd ; for example, cd(x) decre-
ments the reference count of the K object x .
Kdb Programmers Manual 51

The C - K Interface

 tem-

unt.

t use.
nted
wice

 its

ment
or

t to

h
Knowing when to decrement reference counts is analogous to knowing when to free
porary storage allocated with malloc() , but trickier because cd is recursive. For exam-
ple, every item in a general K list (type 0) is also a K object with its own reference co
If a K object x is created and then inserted in the general K list y, and if the reference
count of y is subsequently decremented, the reference count of x will be decremented
automatically and therefore should not also be decremented explicitly.

Reference counts can also incremented, with the API function ci . Typically, the reference
count of a K object must be incremented once for every independent use after the firs
(An independent use is one that may cause the object’s reference count to be decreme
once in the future.) For example, if a K atom or vector is created and then inserted t
into a general k list, its reference count must be explicitly incremented once.

For convenience, the function ci returns its reference-count-incremented argument as
result. For example, suppose that the K object r is the result of a C function called from K
and r is not created in that function. The reference count of r can be incremented in the
return statement, as follows.

return ci(r);

It is best to avoid complicated reference count situations and leave memory manage
to K by moving K objects to the K side of the interface and referencing them there. F
example, the K object bonddata can be moved to a global variable in the .u directory
of K with the same name by

t=gnk(1,bonddata), r=ksk("{.u.bonddata::x}",t), cd(t)

The K object .u.bonddata can now be used in any K function, in particular, ones
called from C.

Date Conversion

Both jd and dj take a C int argument and return an C int result. The argument to jd
is an integer of the form yyyymmdd and the result is a Julian day count. The argumen
dj is a day count and the result is a yyyymmdd integer. These functions are useful for
date arithmetic. For example, to add 5 days to a date, first convert to Julian days witjd ,
add 5 to the result and convert back with dj .
52 Kdb Programmers Manual

Registering K Event Loop Callbacks

ng the
loop

se

-

Registering K Event Loop Callbacks

It is possible to send and receive non-K IPC messages in a K application by managi
non-K connection in C functions and registering the socket callbacks in the K event
with the API function sdf . This function takes two arguments, the socket id (for an
accept callback) and the callback function, as in

sdf(sockid,fn);

Use the negative of the socket id to establish a read callback, as in

sdf(-sockid,gn);

The callback functions fn and gn both take one argument, which is the socket id. Clo
the socket with the API function scd , e.g. scd(sockid) .

Example: Summing Two K objects

The following C function illustrates straightforward manipulation of K objects by sum
ming two K integer objects, both of which are either an atom or vector. The function
header is for a DLL. The best way to sum two K objects is, of course, using K, as in

a = gtn(2,x,y); s = ksk("+",a); cd(a);

__declspec(dllexport) K my_sum(K x,K y)

{ K z;

int i;

// case: both x and y are atoms

if(1==x->t&&1==y->t) return gi(Ki(x)+Ki(y));

// case: x is an atom and y is a vector

if(1==x->t&&-1==y->t){

K z=gtn(-1,y->n); // z is the same length as y

for(i=0;i<y->n;i++)KI(z)[i]=Ki(x)+KI(y)[i];

return z;

}

// other cases: vector x, atom y and vectors x, y

}

It is left to the reader to complete this example.
Kdb Programmers Manual 53

The C - K Interface

listen-
base

es the
g the
Example: Accessing a Kdb Server with KDBC

The following example can be found in www.kx.com/a/kdb/connect/kdbc.txt. It illustrates
communication between a C program and a Kdb database server. The Kdb server,
ing on port 2001, is started with the following command, which also creates the data
from the SQL script sp.s (in the Kdb download from the kx website).

k db sp.s -p 2001

The C program connects to the database server, sends it an SQL query and process
result. Note that the K result returned by the Kdb server is a 3-item general list holdin
column names of the result table, the data in column order and the data types.

#include "k20x.h"

extern printf(S s,...),gets(S);

main()

{ K q,r,n,d,t; // query,result,names,data,types

cd(ksk("h:3:(`;2001)",0)); // connect

cd(ksk("k:{h 4:x}",0)); // a remote exec function

q=gp("select sum qty by p from sp"); // KSQL query

r=ksk("k",q),cd(q); // result, free query

n=KK(r)[0],d=KK(r)[1],

t=KK(r)[2]; // names, inverted data, types

printf("columns: %d\n",n->n); // number of columns

{I i=0;for(;i<n->n;++i)
printf("%s %s\n",KS(n)[i],KS(t)[i]);} // name&type

printf("rows: %d\n",KK(d)[0]->n); // number of rows

printf("%s %d\n",KS(KK(d)[0])[0],

KI(KK(d)[1])[0]); // first row(int,varchar)

cd(r); // free result

cd(ksk("3:h",0)); // close connection

{C b[1];printf("\ndone ... ");gets(b);} // prompt

return 0;}
54 Kdb Programmers Manual

http://www.kx.com/a/kdb/connect/kdbc.txt

Example: Evaluating KSQL Statements

he fol-

e
Example: Evaluating KSQL Statements

KSQL stored procedures written in C use the Kdb entry point .d.r to evaluate KSQL state-
ments (see “Custom Analytics and Stored Procedures” on page 20). For example, t
lowing C character string holds a KSQL update statement.

char s[]="update qty:2*qty from 'OrderItems' where \

orderid=6099"

This constant is placed in a K character vector as follows.

K v;

v=gtn(-3,(strlen(s));

memcpy(KC(v), s, strlen(s));

The function .d.r is then called as follows.

K a;

a=gtn(1,t);

cd(ksk(".d.r",a));

cd(a);

The result of ksk is immediately freed with cd because this update statement does not
produce a needed result. Freeing the K argument list a also frees the character vector v.

Example: A Remote Procedure Call

The KDBC message format for a bulk update is

("insert","table",bulk_data)

(see “Bulk Updates” on page 29). In this case the remote procedure is insert. The corre-
sponding K message has a slightly different arrangement. First, the arguments to th
remote procedure, which in this example is insert, must be grouped. Also, insert requires
that its table name be a symbol, and therefore "table" must be replaced with a symbol.
Assuming the bulk data has already been constructed as the K object bd, the insert mes-
sage can be constructed as follows.

msg = gnk(2,gp("insert"),gnk(2,gs(sp("table")),bd))
Kdb Programmers Manual 55

The C - K Interface

e
The message can be sent to the Kdb server using the K function k defined in “Example:
Accessing a Kdb Server with KDBC” on page 54).

cd(ksk("k",msg));

The reference count of the ksk result is decremented immediately because it will not b
used. The reference count of the message should also be decremented.

cd(msg);
56 Kdb Programmers Manual

	Kdb Programmers Manual
	Contents
	1 Introduction�1
	2 Design and Performance�7
	3 Creating and Managing Kdb Databases�15
	4 Starting and Managing Kdb Servers�23
	5 Kdb Topics�31
	6 Database Topics�43
	7 The C - K Interface�45

	1�� Introduction
	RDBMS
	High Performance
	Analytic Server
	Kdb Architecture
	Kdb Flexibility
	Other Kdb Information
	Evaluation Kdb
	Production Kdb
	Who Should Read this Manual

	2�� Design and Performance
	Memory Architecture
	Shuffle Architecture
	Parallel Architecture
	Distributed Queries
	Performance of Parallel Databases

	Transaction Processing
	The K Programming Language

	3�� Creating and Managing Kdb Databases
	Database Organization on Disk
	Creating Databases
	Enumeration

	Managing User Access
	The user Table
	The access Table

	Customizing Kdb Databases
	Column Attributes
	Custom Analytics and Stored Procedures

	4�� Starting and Managing Kdb Servers
	The Kdb Startup Command
	The ODBC flag -dsn
	The data source name f
	The Web server port -P[n]
	The TCP/IP port -p[n]
	The transaction logging flag -l
	Rollbacks

	Replication server location -r[h]p
	Starting a Shuffle Database

	Connecting to a Kdb Server
	TABLE 4.1�� Data Types
	JDBC
	ODBC
	KDBC
	Remote Procedure Calls
	Bulk Updates
	Managing Transaction Logs

	Gateway Servers

	5�� Kdb Topics
	Estimating Performance in Memory Databases
	An Example
	Base Statements are Generic
	Other Base Statements
	Search Phrases
	where Phrases

	The Performance Unit MRPS
	SQL Performance
	Estimating Temporary Storage Requirements
	Estimating Real Memory Requirements

	K Language Essentials
	Data Types
	The K Tree
	Attributes

	Inter-process Communication
	Connecting
	Sending and Receiving
	Closing a Connection

	File Management
	Functions
	K and Kdb
	The tpcb Example
	Each Operators

	6�� Database Topics
	Multi-Threading
	Example

	7�� The C - K Interface
	Introduction
	K <-> C Interface Functions

	Compilation
	Header and Lib files

	The C Structure of the K Data Object
	Data Types
	Creating K Atoms
	Creating K Lists
	Creating Character Vectors
	Creating Dictionaries

	Accessing and Modifying K Atoms
	Accessing and Modifying K Lists
	The Access Function for a General List
	Appending to a K List

	Calling K from C
	C calling K calling C

	Linking to C Functions in K
	Signalling a K Error
	Managing Reference Counts
	Date Conversion
	Registering K Event Loop Callbacks
	Example: Summing Two K objects
	Example: Accessing a Kdb Server with KDBC
	Example: Evaluating KSQL Statements
	Example: A Remote Procedure Call

