Kdb Programmers Manual

Kdb Programmers Manual Copyright © 2000 by Kx Systems, Inc.

Edition 1. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written per-
mission of the copyright owner.

This book is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Kx Systems, Inc. Kx Sys-
tems assumes no responsibility or liability for any errors or inaccuracies that may
appear in this book. The software described in this book is furnished under license
and may only be used or copied in accordance with the terms of this license.

Contents

1 Introduction 1

RDBMS 1

High Performance 1

Analytic Server 2

Kdb Architecture 3

Kdb Flexibility 3

Other Kdb Information 4
Evaluation Kdb 4

Production Kdb 4

Who Should Read this Manuab

2 Design and Performancer
Memory Architecture 7
Shuffle Architecture 9
Parallel Architecture 10
Distributed Queries 10
Performance of Parallel Databasekl
Transaction Processingl2
The K Programming Languaget3

3 Creating and Managing Kdb Databases

Database Organization on Disk5
Creating Databases15
Enumeration 16
Managing User Access17
Theuser Table 17
TheaccessTable 18
Customizing Kdb Databasesl9
Column Attributes 19
Custom Analytics and Stored Procedured

4 Starting and Managing Kdb Serversas

The Kdb Startup Command23
The ODBC flagdsn 23

KSQL Reference Manual

http://www.kx.com

The data source nanfie 24

The Web server porP[n] 24

The TCP/IP portp[n] 25

The transaction logging flay 25
Rollbacks 25

Replication server locatiom[h]p 26

Starting a Shuffle Database26

Connecting to a Kdb Server27

JDBC 28
ODBC 28
KDBC 28
Remote Procedure Calls29
Bulk Updates 29
Managing Transaction Logs 30

Gateway Servers30

5 Kdb Topics a1

Estimating Performance in Memory Databasas

An Example 31
Base Statements are Generig2
Other Base Statements32
Search Phrases 33
where Phrases 33
The Performance Unit MRPS34
SQL Performance 34
Estimating Temporary Storage Requiremengg
Estimating Real Memory Requirement85

K Language Essentials35

Data Types 35
The K Tree 36
Attributes 37

Inter-process Communication37
Connecting 37
Sending and Receiving 38
Closing a Connection 38

File Management 38

Functions 39

Kand Kdb 39

KSQL Reference Manual

The tpcb Example 40
Each Operators 41

6 Database Topics 43

Multi-Threading 43
Example 43

7 The C - K Interface 45

Introduction 45
Compilation 45
Header and Lib files 46
The C Structure of the K Data Object6
Data Types 46
Creating K Atoms 47
Creating K Lists 47
Creating Character Vectors47
Creating Dictionaries 48
Accessing and Modifying K Atoms 48
Accessing and Modifying K Lists 48
The Access Function for a General Li#t9
Appending to a K List 49
Calling K from C 49
C calling K calling C 50
Linking to C Functions in K 50
Signalling a K Error 51
Managing Reference Count$1
Date Conversion 52
Registering K Event Loop Callbacks3
Example: Summing Two K objectss3
Example: Accessing a Kdb Server with KDBG4
Example: Evaluating KSQL Statements5
Example: A Remote Procedure Cabs

KSQL Reference Manual

1 Introduction

The home page on the Kx website displays the following succinct description of their
database products.

High-performance analytic database servers

This manual is an elaboration on that statement in technical terms. We begin with a closer
look at the statement itself that will lay the groundwork for the technical chapters ahead.

RDBMS

First of all, let us understand thddtabase servamplies, among other things, relational
database server. Kdb supports ANSI SQL and the client interfaces that application pro-
grammers have come to expect: JDBC for Web clients and OBDC for Windows clients.
Kdb databases can also be published and queried directly over the Web in HTML, XML
and CSV format.

Kdb servers run on Linux, NT and UNIX.

High Performance

Performance of database servers generally refers to through-put, of which there are several
flavors. There is transaction processing, which generally means many (nearly) simulta-
neous, small interactions with a database. There is decision support, including OLAP,
which involves substantial data analysis that may be either precomputed or real-time. And
there are data warehouses, which hold vast amounts of data that can be mined (like an ana
Iytic server) or distributed to “retail centers”, databases that interact with clients. There

are Kdb customers in all three areas that chose Kdb over the competition, in part because
of its performance advantage.

How does Kdb performance excel in all three areas? While no single factor can account
for everything, the most prominent one is also particularly relevant to this manual: from
the beginning, the performance characteristics of modern computers and operating sys-
tems has been a major factor in the design and implementation of Kdb. We will see this in

Kdb Programmers Manual 1

Introduction

the organization of Kdb data, in the characteristics of the KSQL language and elsewhere
throughout this manual. We will also see that Kdb performance is close to optimal.

Analytic Server

An analytic database server is one where data analysis can routinely be performed on the
server instead of on clients' workstations. The typical SQL database server is not an ana-
Iytic server. SQL is simply not suitable for many computations and too slow for many
others. However, Kdb extends SQL with

e order (in practice, usually time-dependent order),
« function-based access to indicative tables for roll-ups, and

» extensible queries using customer-defined analytics.

to create KSQL, a powerful computational language. KSQL, together with Kdb’s high
performance, makes Kdb an analytic server.

Who needs an analytic server? Analyses of data on an SQL server that depend on order in
the data — usually, date order — are typically done on clients' workstations. (For example,
analyzing increments in sales from one day to the next requires data to be processed in
chronological order). SQL does not recognize order. The most that a typical SQL server
can do is return data to clients in a prescribed order, where the analyses is done.

There are many problems associated with performing analysis on the client side. First,
client code is complicated enough managing user interactions and report generation with-
out the additional complications posed by analytical code. Second, it is fairly typical that
the analytical results are relatively small compared to the amount of data required to gen-
erate them. If the computations are done on a server then only the results must be sent to
the client, while large amounts of data sent to clients for analysis can clog networks and
workstations.

In contrast to a typical SQL database, Kdb tables are ordered and the KSQL language
works with ordered tables. You can ignore the order and use SQL on Kdb databases, but
you can also have an analytic server by using KSQL. In addition to order, KSQL is exten-
sible. Customers can define their own specialized analytics that can be used in KSQL
queries as if they are KSQL primitive functions. KSQL is SQL with order and extensibil-

ity.

2 Kdb Programmers Manual

Kdb Architecture

Kdb Architecture

There are three architectures for Kdb databases. The first leveua memorydata-
bases, or simplmemorydatabases. Virtual memory databases are limited only by the
practical limits for virtual memory on the server, about 1.5 gigabytes for NT and Linux
and 3 gigabytes for UNIX. These databases require the least maintenance.

The second level of architecture is calaifflebecause it generally marks the point

where segments of the database are shuffled in and out of virtual memory on demand.
Tables in Kdb are stored in column order; in particular, an integer column with N items
requires 4N bytes of storage and a floating point column of that length requires 8N bytes.
The shuffled database segments are columns of designated tables. There is no limit to the
size of a shuffle database other than disk space. There is, however, a practical limit on the
size of table columns: for optimal performance, all columns required for each computation

must fit entirely in real memoily This requirement still allows for very large tables in
large shuffle databases. For example, one Kdb customer queries tables of 35,000,000
rows (and growing) and 200 columns. In this particular application, the shuffle architec-
ture can accommodate a database that is 50 times larger than the memory architecture.

The third architectural level is callgdrallel. The only limit on the size of a parallel data-
base is the amount of disk memory on the server. Conceptually, parallel databases are col-
lections of virtual memory or shuffle databases.

Given modern high-speed sequential disk access, real memory caching and the inverted,
column-oriented layout of Kdb tables, the performance when data on disk must be
accessed can approach that of a memory database.

Kdb Flexibility

Kdb database systems are programmable systems. Kdb databases have the standard clier
interfaces, JDBC and ODBC, for sending KSQL and SQL commands to servers and
receiving results. Kdb also has its own interface, KDBC, for remote database manage-
ment. Using KDBC, customized processes can be introduced into a database system that
modify default Kdb server behavior such as transaction logging and client access. For
example, a KDBC client that is also connected to a real-time security price feed can peri-

1. The optimal performance requirement applies to virtual memory databases as well.

Kdb Programmers Manual 3

Introduction

odically collect prices from the feed and send them to a Kdb server as bulk updates to
achieve a one hundred-fold increase in the rate of updates, typically one hundred thousand
updates per second instead of one thousand per second.

Custom analytics and KDBC clients can be written in C or K, the implementation lan-
guage of Kdb. KDBC clients can also be written in Java and Visual Basic.

Other Kdb Information

The examples in this manual go into sufficient detail to give a comprehensive picture of

the Kdb databases and what must be done to customize and maintain them. Related notes,
comments, performance numbers and application kernels can be found on the web, at
www.kx.com/a/ The web files are maintained by Arthur Whitney, the architect of Kdb

and CTO of Kx Systems. This manual is essentially an elaboration of that material, but
does not cover everything.

Evaluation Kdb

You will see is that it is relatively easy to create and use sample databases, and test their
performance as well. Hopefully this will induce you to try Kdb on your data. It is easy
(and fast) to download Kdb for an evaluation period; see the Kx website, www.kx.com
and “Production Kdb”, below, for more details. Contact Kx Systems, the developer of
Kdb, if you have special requirements.

Production Kdb

Kdb is downloaded from the kx website and installed in a matter of seconds. That's all
there is to it. It's the same process as downloading the evaluation version. The only differ-
ence between the evaluation version and the production version is the license. The instal-
lation process installs an evaluation license unless a production license is present. Contact
Kx Systems at www.kx.corfor information on production licenses.

When the installation completes you will see a window entitiade.tand a text file
namedKdb.txt Thetrade.twindow is the Kdb (database) Viewdfdb.txtcontains infor-
mation about the Viewer, an example of a query construction and an example of creating a
Kdb Web Viewer.

4 Kdb Programmers Manual

http://www/kx/com/a/
http://www.kx.com
http://www.kx.com
khttp://www.kx.com
khttp://www.kx.com

Who Should Read this Manual

Kdb is rock solid, but there are a few simple things that can be done to make sure that the
installation went OK. For example, the Viewer window hgsi@riesbutton. Press it and

a query entry panel will be displayed with two sample queries. Click on either one to eval-
uate it. Or go through the examples<idb.txt If everything looks OK, you're done.

The download takes a few seconds, depending on your internet hookup. The installation
(execution okdbsetup.eXds nearly instananeous.

Who Should Read this Manual

The first manual in this series, Introduction to Kabfor professionals who do not neces-
sarily know how to program. It shows how to build (memory) databases from the Kdb
Viewer and how to construct elementary queries. The second manual, KSQL Reference
defines the KSQL query language. The sample databases in that manual are also memory
databases. Using only these two manuals, complex, substantial databases can be built,
maintained and accessed with no previous programming knowledge.

This manual — the third — is directed at a different audience, database administrators and
programmers. It's focus is what they must know and do to create powerful Kdb databases.
The next chapter, “Design and Performance”, describes the three Kdb architectures, their
performance characteristics, and indicates what must be done to use them effectively. The
rest of the manual gives the details.

Kdb Programmers Manual 5

2 Design and Performance

The chapter gives a technical overview of the three Kdb architectures. Other notes of
interest on this subject by Arthur Whitney, the architect and principal implementer of Kdb,
can be found on the Kx Systems website at www.kx.com/a/ksitwhe of those notes are
elaborated on here.

All performance numbers given here were taken from the author’s desktop computer,
which has one 450MHz Pentium Il processor and 128 mb of RAM. The numbers are
used to illustrate methodologies for estimating Kdb performance and not to suggest actual
performance on database servers.

Memory Architecture

A significant part of this manual is devoted to programmers who customize Kdb database

systems that are larger than 2 gigabytes. The Kdb méramyitecture is the one to use

for databases up to 2 gigabytes. Kdb memory databases are the easiest to build and
require the least maintenance. The size restriction is due to the fact that memory databases
are loaded entirely into virtual memory when they are activated. (In that regard, make
sure that every page file on the host computer is large enough to hold the entire database;
if not, aworkspace fulmessage will be reported if the operating system assigns too small

a page file to the Kdb server process.) Optimal performance is achieved by matching the
amount of real memory on the host computer to the execution requirements of the most
active queries of the database.

Every table in a memory database is arranged in column order, both on disk and in mem-
ory. Every column is memory-mapped when a table is loaded. Integer and floating-point
columns are loaded — that is, mapped — instantaneously. Varchar items are hashed as the
are loaded and therefore take longer to load — about 1,000,000 items per second. Not only
are tables stored in column order, but integer and floating-point columns are stored as 1-
dimensional C-language arrays. KSQL computational functions are implemented directly

in C. Consequently, KSQL statements execute at near-optimal speeds. The actual speed
can be closely estimated for any KSQL or SQL statement.

1. The word “memory”, when not modified by “real” or “virtual”, means virtual memory.

Kdb Programmers Manual 7

http://www.kx.com/a/kdb/

Design and Performance

An important characteristic of Kdb memory databases is that all but a negligible amount of
processing power in executing a KSQL or SQL statement is directly attributable to the
processing power required by the components of the statement: namely, the CPU cycles
required to execute the statement are — very nearly — the sum of the CPU cycles required
by the components. There are no hidden execution costs that are not attributable to the
host operating system. For example, the execution costs depend only on the columns that
appear in the statement and the ways they are used; the number of unused columns in the
table doesn’t matter.

The practical upper limit on memory databases is 1.5 gigabytes on NT and Linux and 3
gigabytes for UNIX. This estimate includes space for temporary storage requirements
while statements are being evaluated and transaction logs, if any. The size of temporary
results is most important because all columns required for each computation must fit
entirely in real memory for optimal performance. The objective is to be CPU bound.

The section “Estimating Performance in Memory Databases” on page 31 describes meth-
odologies for estimating performance, temporary storage requirements and real memory
requirements of KSQL analytical statements, gefpctstatements. The example is the
following aggregation on two table columns of a table with 1 million rows.

select sum amount by stock.industry, date.month from trade

This statement evaluates in 1 second. The storage size of the 1 milliadevtable is

20 mb. Both the temporary storage requirement and real memory requirement are 16 mb
per million rows. As the size of the table is increased incrementally, the execution times
of the simple component statements increase linearly. The execution times of the state-
ment itself start out linear, but are eventually overwhelmed by memory swapping when
the available real memory is exhausted bythe@hrase evaluation. This example illus-
trates the general rule: for optimal performance, the real memory requirement is that no
table column used in computations should exceed 25% of RAM. (RAM is a relatively
cheap route to a trouble-free, high performance database server. Load up!)

An individual Kdb server is single-threaded (see “Multi-Threading” on page 43 for a dis-
cussion of this design choice). Single-threaded means that user requests are handled seri-
ally, which makes it easy to estimate through-put. Specifically, execution costs are
additive, i.e. the time for a server to execute a suite of statements is the sum of the times
for the individual statements. It is typical that most of the time is spent on repeated execu-
tion of relatively few different statements. In this case the approximate average execution
time for a request is simply a weighted average of the execution times for those statements

8 Kdb Programmers Manual

Shuffle Architecture

by their relative occurrence frequencies. Various through-put measures can be calculated
from this average.

Shuffle Architecture

The shuffle architecture is one of the two choices available when a database exceeds the
limits of a memory database. In this framework, selected tables are not loaded into mem-
ory when the database is activated. Instead, their columns are “shuffled” in and out of
memory, as needed. Columns that are not needed at a particular time are not necessarily in
memory. The shuffle architecture depends on the fact that only a few columns of any table
are ever needed at exactly the same time. Tables that are not shuffled are loaded into vir-
tual memory. Consequently we spealslofiffletablesandmemory tables

Both shuffle and memory tables are arranged in column order. The only difference is that
the columns of shuffle tables must be stored separately on disk. Tables whose columns are
stored separately on disk are said tglayed Shuffle tables are always splayed tables.
However, tables in memory databases can be splayed on disk or not.

Tables with many columns are the best candidates for shuffling because the bulk of these
tables will always be out of memory. In the case where only a few columns account for
most of a table’s references in queries, it may be possible to isolate those columns into a
separate memory table and leave the remainder as a shuffle table.

The methodology for estimating performance in memory databases (“Estimating Perfor-
mance in Memory Databases” on page 31) can be used for shuffle databases, but with an
additional consideration. The items of a varchar column are not simply mapped into
memory; they are also pre-processed to optimize searching and storage. Pre-processing
occurs only once for a memory database, when it is first activated, and consequently, pre-
processing effects do not appear in performance estimates. However, pre-processing a
column of a shuffle table happens every time the column is mapped. Pre-processing can
be avoided by usingnumerationwhich makes varchar columns behave like integer col-
umns; see “Enumeration” on page 16.

Column items are stored contiguously on disk and laid out contiguously in real memory
when accessed. This organization gives optimal disk access performance. (Disk access of
an integer column on a high performance server can be on the order of 100-200 millisec-
onds.) However, the operating system caches accessed shuffle columns in real memory.

Kdb Programmers Manual 9

Design and Performance

Consequently, if the memory hit-rate (so-called locality) is high, the performance is real
memory performance.

The methodology for temporary storage requirements in memory databases (“Estimating
Temporary Storage Requirements” on page 34) also applies to shuffle databases, but with
one additional point. The storage requirements for shuffled columns must be added to the
memory database estimates whenever a shuffled column is referenced.

Real memory requirements for optimal performance (“Estimating Real Memory Require-
ments” on page 35) are the same as for memory databases. In particular, there is the same
size constraint on table columns, shuffled or not: the real memory requirement is that no
table column used in computations should exceed 25% of RAM.

Parallel Architecture

The parallel architecture is both an alternative to the shuffle architecture and the choice for
databases that exceed the limits of a shuffle database. There are no size limits to parallel
databases other than disk space. A parallel database is a family of memory or shuffle data-
bases. That s, a source database that is physically partitioned so that each segment satis-
fies the virtual and real memory requirements. In principle, there can be as many
segments as necessary. The segments can all run on one host computer or be distributed
among several.

Distributed Queries

SQL and KSQL statements can be executed in a distributed manner. Consider a detail
tableA that is partitioned into two detail tablBsaandC, so that every row & is either in
B orinC, but not in both. For example, consider $leéectstatement

select price, quantity from T where quantity>1000

Apply this statement té (in place ofT) and letR be the result table. Then apply it, sep-
arately, to botiB andC and letS be the union of those two result tabl&sandS are iden-
tical SQL tables. However, as KSQL tables, their row orders may differ, depending on
howB andC were extracted fror.

Aggregations require an additional step. For example,

select sum quantity by stock from T where quantity>1000

10 Kdb Programmers Manual

Parallel Architecture

CreateR andS as before. If a stock appears onhBior only inC then the rows for that
stock inR andS are identical. Otherwise, there are two rowS imhose quantity values
sum to the corresponding valueRn Apply the aggregation statement (withoutwesre
phrase) a third time, t8, to produce a result equivalentRo

As of this writing, Kdb support for parallel databases requires the distributed processing
language K. A dedicated Kdb parallel module is in the planning stage. It is not, however,
difficult for programmers to deal with parallel databases and distributed queries, as we
will see in “Gateway Servers” on page 30. The example in that section supports the per-
formance discussion that follows.

Performance of Parallel Databases

Each partition in a parallel database has its own Kdb server. All servers are running when
the database is active and each one must have its own page file. That is, there must be as
many page files of sufficient size as active servers. Clients can be organized so that a
request is sent to a particular server when the database segment in that server is known to
have all the required data, or tgaeway servethat receives all Kdb requests, distributes
them to the parallel servers and consolidates results. Each single server request is a nor-
mal database request, which has already been discussed. The focus here is on distributed
requests.

In a distributed request, the same statement goes to every server. Every database segmer
is a memory database and therefore the MRPS (million rows per second) estimate for this
statement (see “Estimating Performance in Memory Databases” on page 31) is meaningful
for each segment. Using that estimate, we know how many seconds are required to evalu-
ate the statement in every server. The sum of those numbers is the total evaluation time
(although the elapsed time is the maximum value if all servers use different CPUs). Note
that the sum equals the evaluation time when the entire reference table fit in one memory
database.

Additional elapsed time goes to operating system costs to manage multiple servers, net-
work costs to distribute requests and send back results, and dispatcher time to consolidate
results. Modern operating systems are very good at running multiple processes and mod-
ern disk technology deals efficiently with large page files. There are no network costs if

all servers, including the gateway server, run on the same host computer. The execution
time for table unions can be estimated like any other KSQL statement, but is negligible for
commonly-sized results. If the distributed query is an aggregation then an additional
aggregation must be done in the gateway server. However, the execution time for this

Kdb Programmers Manual 11

Design and Performance

additional aggregation is negligible because it is applied to a union of aggregation results,
which is relatively small.

In the example in “Gateway Servers” on page 30, the total elapsed time of the distributed
query was 5% more than the evaluation time. That is, the elapsed time for the distributed
guery, which includes all overhead as well as the total evaluation times on the individual
memory databases, is 5% more than the evaluation time when the same query is run on a
single memory database.

Parallel databases can take advantage of multiple CPUs on the host computer. For exam-
ple, if there are two CPUs and the load of a distributed query is equally balanced over the
two, then statement evaluation time, viewed as elapsed time, is halved. In other words,
through-put is doubled.

To summarize, when a parallel database runs on one host computer, the measured evalua-
tion time for distributed requests is approximately the same as a single request in a single
memory database. The measured elapsed time is approximately 5% more. If there are
multiple CPUs and processing is well-balanced, the apparent evaluation time (elapsed
time) is reduced by a factor nearly equal to the number of CPUs.

Transaction Processing

Consistent and fail-safe ways to update databases is not a topic for this manual. Instead,
we must concentrate here on the tools for implementing update strategies. There is a very
useful paper on the kx websitdigh Volume Transaction Processjrigat is relevant to
transaction processing in Kdb databases. The paper predates the Kdb product. It is writ-
ten in terms of K, the implementation language of Kdb. However, most of the paper is
about databases and the reader who is familiar with this chapter will recognize the differ-
ent Kdb architectures. The paper also contains performance numbers based on standard
benchmarks.

There are two types of transactions in Kdb, individual and bulk. An example of an indi-
vidual transaction is a bank account deposit and withdrawal. Bulk transactions are inserts
or updates of large number of rows, all at once. For example, databases that support anal-
yses of telecommunication or security trading activities are generally updated at regular
intervals with bulk transactions instead of continuously with individual transactions. In

Kdb a bulk transaction is a single message to the database server, not a sequence of indi-
vidual update statements.

12 Kdb Programmers Manual

http://www.kx.com/technical/papers/hpts1.pdf

The K Programming Language

The bank account benchmark application provides an interesting example of how individ-
ual transactions can be processed collectively as bulk transactions to improve performance
(see_http:www.kx.com/a/kdb/examples/tpbin this example there are 100 bank

branches, 10,000 tellers and 1,000,000 accounts. A transaction increments or decrements
an amount from the specified account, from the teller’s total and the branch’s total. This
author timed 50,000 transactions on the database server process, in various arrangements.
If the transactions arrive one a time, the server evaluates about 2000/sec. However, if they
arrive in batches of 5 each, the server evaluates about 6000/sec., and if there are 10 in eact
batch, about 7200/sec. One batch of 50,000 evaluates in about 200 milliseconds. See
“The tpcb Example” on page 40 for the way these timings are done.

Knowing the arrival rate of individual transactions at the server tells us how they should

be grouped in batches. Grouping transactions at each branch can cause unacceptable
delays. However, a gateway server that receives all transactions can send them in batches
to the database server and distribute the results.

The example bank account database is a small memory database with plenty of room for a
transaction log (see “The transaction logging flag -I” on page 25). Realistically, grouping
transactions is most likely not necessary, even if ATM machines are included. For larger
databases, bulk updates go well with the shuffle architecture because every column of a
shuffle table, which is shuffled in and out of memory, must be saved to disk immediately
after it is modified. It is best that a column contains a significant number of changes every
time it is saved to disk. Very large databases that can be partitioned for updates — where
the data required for any transaction is entirely in one partition — fit the parallel architec-
ture and require very little customizing. See the paper referenced at the beginning of this
section for a general approach in other situations.

The K Programming Language

The implementation language of Kdb is K, which is also a product of Kx Systems. Kis a
high-performance, high-level array language. K is implemented in C. With regard to
arithmetic and relational primitives, K is like a C macro language for arrays. K also has
highly-optimized advanced primitive functions, such as binary search. Additionally, like
Java, K memory management is transparent.

Kdb databases can be enhanced with functions defined in K or C. K functions are defined
in K and Kdb scripts and loaded into the server. C functions are linked into the server via
K and Kdb scripts and behave like K functions. Database enhancements, i.e. custom ana-

Kdb Programmers Manual 13

http:www.kx.com/a/kdb/examples/tpcb.t
http:www.kx.com/a/kdb/examples/tpcb.t

Design and Performance

lytics and transaction definitions (so-calktdred procedurgsrequire no K knowledge
by C programmers. However, C programmers do need the interface between C and K;
see the chapter “The C - K Interface”.

Kdb clients and gateway servers can be written Java, C and K; clients can also be written
in Visual Basic. A bit of K knowledge is required of C programmers here; see “K Lan-
guage Essentials” on page 35.

14 Kdb Programmers Manual

3 Creating and Managing Kdb Databases

Database Organization on Disk

We have already dealt with the performance characteristics of Kdb databases for accessing
and manipulating data (see chapter “Design and Performance”). The question remains as
to how the saved database should be arranged on disk for the best performance when writ-
ing modified data to disk.

There are two ways to arrange a Kdb database on disk, either as a single database file
(extensionkdb) or in splayedformat, i.e. as a directory whose entries are tables (the
directory is the database). When a database is splayed into individual tables, each table
can also be arranged in one of two ways, either as a single file (exténsiosplayed as

a directory whose entries are files containing individual columns (extef}sion

A memory database can be arranged in any way that conforms to these rules. How it is
done is largely a matter of convenience when building the database and whether or not

default logging will be used, which requires a single file arrangement (see “The transac-
tion logging flag -I” on page 25). However, if performance is in issue when saving a par-
ticular table, then that table should be splayed on disk when the its size exceeds half the
available RAM.

A shuffle database must be splayed because every shuffle table must be splayed. Every
splayed table is a shuffle table.

Creating Databases

A Kdb database can be initialized in the conventional way usingc&ite statements in

a SQL script (extensios) or KSQL table initialization statements (see “Empty Lists and
Empty Tables” in the KSQL Reference Manuabmall tables can also be populated at the
same time they are created using KSQL table initialization.

A database can also be created by starting a server with a KSQL script inosbdishate-
ments bring in tables from files of any type that appear in “The data source name f’ on
page 24. Théoad statements can also be entered by hand in the Kdb console after the
server is started.

Kdb Programmers Manual 15

Creating and Managing Kdb Databases

Once the database is create it must be saved. It can be saved in one file as follows.
save 'c:/dbs/test’

The saved databasecigdbs/test.kdh Each table must be saved separately to create a
splayed database, in which case each table can be splayed or not. For example, if the cus-
tomer table is to be saved as one file,smeedyadically, as follows.

‘c:/dbs/stest' save ‘customer’

The saved table is/dbs/stest/customer.i Usersaveto save the order table as a splayed
table.

‘c:/dbs/stest' rsave 'order’

The saved table is the directarydbs/stest/order the columns are files in that directory.

Enumeration

Every time avarchar column is loaded into memory it is pre-processed to optimize stor-
age and searching. This cost can be avoided for a column that is loaded frequemdy by
meratingthe column. An enumeratsdrchar column is an integer column whose items
are indices into &eferencevarchar column. Typically, the reference column is a primary
key column and the enumerated column is a foreign key.

Enumerated columns are liate columns. For example,

trans:([n:('cart’, 'bike’, 'roadster’)] w:(4, 2, 4))

o:([] n:(cart’, 'roadster’, ‘bike’, ‘cart’, ‘cart’, 'bike"),
d:('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997"))

Even though columd is intended to be @ate column, it is simply aarchar column
whose items look like dates. To maka column of dates, the relationship to dates must
be made explicit.

o:([] n:(‘cart’, 'roadster’, 'bike’, 'cart’, 'cart’, 'bike"),
d:date('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997"))
The entries of columd are now integers, the Kdb internal representation of dates. Anal-

ogously, to enumerate coluroron the primary key afans, the relationship must be
made explicit.

16 Kdb Programmers Manual

Managing User Access

o:([] n:trans('cart’, 'roadster’, 'bike’, ‘cart’, 'cart’, 'bike"),
d:date('10/5/1998', '4/7/1997', '11/14/1998', '1/5/1999', '8/15/1998', '3/10/1997"))

The entries of column are now indices into colummof tabletrans. Columnn is now
an enumerated column.

A text representation of dates can be useshiare phrases, and this is also true of enu-
merated columns. For example, the following statement is valid.

select from o where n ='cart’
Also like dates, enumerations must be explicit in inserts.

'0' insert (trans('bike"), date('04/02/1999")

Managing User Access

There are two reserved tables in a Kdb datatzaeessanduser. Theaccesdable holds
information on which tables can be seen or modified by which userais€h&ble holds

user names and passwords. Ukartable is defined then every connection to the database
requires a user name and password. Consequently, if access to the database must be lim-
ited, the prudent thing to do is include the database administrators’ names and passwords
in theusertable’s initialization when the database is created. The administrators’ can then
give access to others.

Theuser Table

The user table is managed like any other table. It has columns naereshdpassword
and can be initialized as follows.

user: ([user:()] password:())

Both fields are varchar fields. An administrator (or any user) can be added.
‘user' insert (‘fadmin’, 'pw310")

Alternatively, administrators (or users) can be included when the table is defined.

user: ([user: enlist 'admin’] password: enlist 'pw310")

Kdb Programmers Manual 17

Creating and Managing Kdb Databases

Theaccesslable

Theaccesdable has columrsccessvar anduser. Theaccessolumn holds the type of

access allowed to the data object namedhinfor the user named imser. Note that data

objects are not just base tables, but include views and any other data in the database. The
selectentries for a base table are inherited by any view for which that base table is the ref-
erence table. On the other hand, users candweetaccess to a view without having
selectaccess to its reference table.

The access table is initialized as follows.
access:([access: (), var: (), user: ()])

All three fields are varchar fields. Every entry of #oeessolumn is one of 'delete’,
'insert’, 'select’, and 'update’. Like treertable, theaccesdable can also be managed like
any other table. In addition, permissions can be specified with they@@t statement.
For example,

grant all on all to admin

gives this administrator complete access to all data in the database. Note that “$” must be
appended to the front of this statement if it appears in a KSQL script. Other examples are

grant select on all to all
lets everyone access and modify all tables, includs®ey andaccess
grant all on t to all

lets everyone access and modify the taple
grant insert on all to tom

lets Tom insert data in any table, and
grant update, delete on t, u, v to mary, andrew

lets Mary and Andrew update and delete tablesandv.

Kdb does not support thvéith grant optionon agrant statement.

18 Kdb Programmers Manual

Customizing Kdb Databases

Customizing Kdb Databases

Column Attributes

Every table column has a set of attributes that are defined in the column’s attribute dictio-
nary (see “Attributes” on page 37). Attributes are defined using a syntax that is carried
over from K. The column width attribute, for example, is denoted/land is defined for
column name of table customer as follows.

customer.name..W:4

Any customer name with more than 4 characters will now display as “****". This
attribute does not have a default value because Kdb estimates the width from the data.
Attributes with default values do not necessarily appear in attribute dictionaries.

TheT attribute specifies the column type. This may be the data typtl,efloat’, 'var-
char'or'varbinary. The column type can also be atate, time ortimestamptype, such
as'date’ 'day’, 'month; 'time'and'timestamp’ It can also be the name of the table by
which the column is enumerated. For example, in “Enumeration” on page 16, @lumn
has typétrans’. Finally, the type of a foreign key is the (enlisted) name of the table hold-
ing the primary key. For example, if the primary key table is customer then the type
attribute of the foreign key columnaslist ‘customer..

The value of thd@ attribute need not be set for tables defined by KSQL or SQL. However,
it may be necessary to do so for imported tables. Note that setting the attribute does not
automatically force conversion of the data to that type.

TheP attribute specifies the number of decimal digits to be displayed in floating-point col-
umns. Its default value is 2.

TheN attribute indicates whether or not the column can contain null values (1 for yes, 0
for no). The default value is 1.

The D attribute defines the default value to be used when a column item is needed but not
specified. The default is the null value for that column.

TheK attribute indicates whether or not a column is a primary key (1 if yes). The value
need not be set for tables defined by KSQL or SQL. However, it may be necessary to do
so for imported tables. Note that all primary key columns must appear first in the default
column order, i.e. the order okalectstatement where no columns are specified.

Kdb Programmers Manual 19

Creating and Managing Kdb Databases

TheS attribute indicates whether or not a column is sorted in ascending order (1 if sorted).
This value is used by Kdb to determine whether or not optimized searches can be done.
The value must be explicitly set. It is up to the user to ensure that the column actually is
sorted.

When a splayed is saved the attributes are saved in the table directory as the file named
“I". That is, the name consists of only thextension.

Custom Analytics and Stored Procedures

Functional enhancements to Kdb servers are generally in one of two areas, either custom
analytics or stored procedures. Custom analytics typically take 1-dimensional array argu-
ments — i.e., table columns — and return conformable array results. They can be embedded
directly in KSQL statements as if they are KSQL primitives. For example, a data-smooth-
ing function that applies to two colummsjce anddate, can be used as follows.

select price, date, smooth[price,date] from trade where amount>1000

Custom analytics can be written in K, the implementation language of Kdb, and C. In par-
ticular, C mathematical library routines can be linked into Kdb as custom analytics; see
“Linking to C Functions in K” on page 50.

Stored procedures usually define transactions, i.e. collections of table modifications that
must be completed without intervening modifications from other sources, thereby main-
taining database consistency. Stored procedures can also be written in K or C.

Kdb provides the entry poind.r for evaluating KSQL and SQL statements within stored
procedures. For example,

.d.r'update gty:2*qty from 'Orderltems’ where orderid=6099"

is a K expression that updates lerltems table. This expression can be evaluated in
a C function using the API function ksk; see See “Example: Evaluating KSQL State-
ments” on page 55 for the way to evaluate KSQL statements within C functions.

Custom analytics are embedded in KSQL statements, where they are called with KSQL
syntax, as in

smooth[price,date]

20 Kdb Programmers Manual

Customizing Kdb Databases

Stored procedure evaluations usually make up the entire statement in which they appear.
As a result, they can be called in a KSQL statement, as in

update_save['t, (‘abc',27, 3.24)]
or in a KDBC remote procedure call statement; see “KDBC” on page 28.

Stored procedures are generally thought of in regard to transaction processing. They are
also provide an effective way to manage Kdb gateway servers. See “Gateway Servers” on
page 30.

Kdb Programmers Manual 21

4 Starting and Managing Kdb Servers

The simplest way to start Kdb from a console is with the command
k db

The console then becomes a Kdb console, as indicated by the prompt

>

Databases and individual tables can be loaded (sématheommand in the KSQL Refer-
encemanual). SQL and KSQL statements can be evaluated (enter a statement at the
prompt and presReturn). The active tables can be displayed in the Kdb Viewer (see the
showcommand) and, from the Viewer, the Kdb process can become a web server or a
TCP/IP server. The Kdb console is closed with double back-slash.

>\

Loading data and making the Kdb process a database server can also be done from the
command line, and more. No matter what start command options are specified, the con-
sole still becomes a Kdb console where statements can be entered and evaluated.

The Kdb Startup Command

The general form of the Kdb command that starts a fully functional server is as follows.

k db [-dsn] f [-P[n]] [-p[n]] [-1] [-r[h]p]

Square brackets mean that the item within need not be present; the brackets themselves dc
not appear in actual commands. Every command must startkndth . The meanings
of the items to the right of this prefix are listed below.

The ODBC flagdsn

If this flag is present, then the name immediately to its right is a file DSN or user DSN,
which designates the data target of an OBDC connection. See the Microsoft NT documen-
tation for details. After that, see www.kx.com/a/kdb/connect/odbimbapecific Kdb
information.

Kdb Programmers Manual 23

http://www.kx.com/a/kdb/connect/odbc.txt

Starting and Managing Kdb Servers

The data source nanie

If -dsn is not present thein holds the name of one of the following:

A Kdb database file (file extensiokdb)

A directory whose entries make up a Kdb database (see “Database Organization on
Disk” on page 15).

A KSQL script (file extensiort). A KSQL script initializes the database. It can
contain both KSQL and SQL statements, but the two statement types must be distin-
guished. This is done by putting “$” in front of SQL statements; KSQL statements are
the default in KSQL scripts.

An SQL script (file extensiors). An SQL script serves the same purpose as a KSQL
script. The only difference is that KSQL and SQL statements are distinguished by put-
ting “$” in front of KSQL statements; SQL statements are the default in SQL scripts.

A Microsoft Access database file (extensionlb). Each Access table becomes a Kdb
table.

A Microsoft SQL Server database (extensionlf). The name of the database is

given, not the database file (they are usually the same, but not necessarily). Even so,
the file extensionmdf for a SQL Server database file must be used. For example, if
pr.dbf is a SQL Server database file whose contents are the database named
prices , then the parametérto the Kdb start command must fixéces.mbf

Each database table becomes a Kdb table.

A dBase file (extensiordbf). These files result in one-table databases.

An Excel file (extensionxls). Each worksheet in an Excel file contributes a table to
the database.

A comma-separated-value file (extensiosv) or a text file with tab-delimited fields
(extensiontxt). These files generate databases with only one table.

The Web server pofP[n]

Specify this option to create a web server. sdo create a web server having the
default port number o 2080 to create a web server listening on port 2080. Any

24

Kdb Programmers Manual

The Kdb Startup Command

authorized port number can be used. The default port numberis 80. A Kdb server can be
both a web server and a TCP/IP server.

The TCP/IP portp[n]

Specify this option to create a TCP/IP server. {pséo create a TCP/IP server having the
default port number op 2001 to create a TCP/IP server listening on port 2001. Any
authorized port number can be used. The default port number is 2001. A Kdb server can
be both a TCP/IP server and a web server.

The transaction logging flag

If this flag is included then a transaction log is maintained and saved to disk after every
transaction, i.e. every request that changes the data. Log items are triples containing the
timestamp of when the request was received, the user who sent the request and the actual
message. The log is replayed by doing the following for each log item, in the order in
which the original transactions were receivedcsetent_time to the timestamp in the

log item, seturrent_user to the user in the log item and execute the transaction. Conse-
guently, any reference turrent_time andcurrent_user will be the same as when the
transaction was originally evaluated.

This default logging applies only to one-file memory databases (file extekdion).
The log file is part of the database, but only the log file is saved to disk as part of transac-
tion processing.

The database is saved to disk (and the log is reset to the empty log) whenever the follow-
ing Kdbsavestatement is executed.

save"

Since the log is part of the database it is important to execute this statement on a regular
schedule, depending on the transaction rate, so that the log does not get too large. See
“Managing Transaction Logs” on page 30 for a way to do this automatically.

Rollbacks

Rollbacks occur because the database is in an inconsistent state. That is, a stored proce-
dure is executing a transaction when, after some modifications have been made, an error
occurs. If any modifications have not been done at this point then those that have been

Kdb Programmers Manual 25

Starting and Managing Kdb Servers

completed must be undone. To guarantee a consistent state the transaction log is applied
to saved database, thereby returning the database to the state before this stored procedure
was executed. This can be very time consuming when the transaction log is large. Roll-
backs should be avoided wherever possible, and the way to do that is with careful check-
ing in stored procedures to anticipate potential errors. If a stored procedure cannot
proceed with the expected updates then the recommended exit is with a 'rollback’ error
message, indicating to the sender that the updates have failed.

Replication server locatiosr[h]p

Use this flag to designate the host and port of a replication server, which maintains a copy
of the active database. Every message sent to the main server (the one whose start-up
command contains the flag) that causes the database to be modified is sent asynchro-
nously to the replications server. As a consequence, updates on the replication server are
done after the main server.

If the host computer is not specified then it is the one on which the main server is running.
(Running a replication server on the same host can be useful when the host has two
CPUs). The main server and the replication server must be started with identical data-
bases. If both run on the same computer then both can be started with the same database
file because their in-memory copies will be different and the replication server never saves
the database.

The replication server should be started first, as a TCP/IP server. The main server is then
started with ar option value identical to thgp option value in the replication server
startup command.

Starting a Shuffle Database

According to “Database Organization on Disk” on page 15, there is nothing in the way a
splayed database is organized on disk to distinguish it as a memory or shuffle database.
The distinction is made when the Kdb server is initialized. If the database is splayed then
the-s indicates that the splayed tables in the database are to be shuffled. Otherwise, the
database is treated like a memory database.

26 Kdb Programmers Manual

Connecting to a Kdb Server

Connecting to a Kdb Server

This section describes the ways clients can connect to Kdb database servers. Kdb supports
both JDBC and ODBC, the well-known, standard interfaces. There is also an interface
that is specific to Kdb called KDBC. Both KSQL and SQL statements can be sent to Kdb
servers by all three interfaces. The only difference is that SQL statements are the default
for JDBC and ODBC clients, while KSQL is the default for KDBC clients. Statements of
the non-default kind must start with “$” at the front.

Java and Visual Basic are good implementation languages for Kdb clients because they
and K, the implementation language of Kdb, share the same basic self-describing data
types; see Table 4.1, below.

TABLE 4.1 Data Types

K3/KdbP Java Visual Basic/Excel
1 (int) Integer Long

2 (float) Double Double

3 (byte) Byte Byte

4 (symbol/varchar) String String

6 (null) null Null

0 general list Object(] Variant()
-1 int list/column int[] Long()

-2 float list/column double([] Double()
-3 (byte list/varbinary) | byte][] Byte()
-4 varchar list/column String[] String()

a. See “Data Types” on page 46 for more information on the K data types.

b. The Kdb Date type corresponds to K (julian) int, while Time and Times-
tamp correspond to float.

KDBC is simpler than JDBC and ODBC because it has just one entry point, is richer in the
kinds of messages that can be sent and is faster because large amounts of data can be sel
in a single message. Both JDBC and KDBC use KDBC in their implementations. The
KDBC interface is available to Java and C clients as an alternative to JDBC and ODBC.

Kdb Programmers Manual 27

Starting and Managing Kdb Servers

JDBC

The Kdb JDBC driver is a type-IV, pure Java, driver. The driver can be found on the Kx
website, at www.kx.com/a/kdb/connect/jdbddownload the filgdbc.zip and unzip its
contents into the k subdirectory of CLASSPATH. The Kx website directory also contains
examples.

ODBC

The Kdb ODBC driver is a level | driver. See the Kx website for information on ODBC
front ends, in particular the files at www.kx.com/a/kdb/connect/ogbd/the tutorial at
www.kx.com/technical/tutorials/excel/

KDBC

KDBC consists of entry points to open and close connections to Kdb servers and a single
entry point for sending messages. Every KDBC message is in the form

("function”,argl,arg2,...)

where there are as maasgn's as there are function arguments. The function is a stored
procedure defined on the server. Consequently KDBC messagesate procedure

calls. Note that a KSQL or SQL statement can be used in pldéenction” because such

a statement is executable; and therefore can be considered a function with no arguments.
For example,

("select sum qty by p from sp")
The parentheses can be dropped in this case.

The file www.kx.com/a/kdb/connect/kdbc.bwntains both a Java and C version of a cli-

ent accessing a Kdb database with ODBC. The C version can also be found in “Example:
Accessing a Kdb Server with KDBC” on page 54. In the Java version a Java class named
c is created with a constructor that takes the host and port of the Kdb server as arguments.
KSQL statements can then be sent to the server, for example

Object[]Jr = (Object[])c.k("select sumqty by p from sp");

28 Kdb Programmers Manual

http://www.kx.com/a/kdb/connect/jdbc
http://www.kx.com/a/kdb/connect/odbc/
http://www.kx.com/technical/tutorials/excel/
http://www.kx.com/a/kdb/connect/kdbc.txt

Connecting to a Kdb Server

The resultr contains three lists of column names, column data, and column types. The
connection to the server is closed withlose() . SQL statements can also be sent,
but since this is a KSQL interface, they must begin with “$".

The C version is organizationally the same, except that K functions are called to connect
to the server and close the connection, and a K function is defined for executing KSQL
expressions on the server and receiving the results. See “K Language Essentials” on
page 35 and chapter “The C - K Interface”.

Remote Procedure Calls

The Java method k used to evaluate the KSQL expression above is one of several that
together implement a Java remote procedure call (RPC, for short). For exafopleisif

a stored procedure on the Kdb server that takes to arguments, and if those arguments are
created in the Java client AsandB, thenfoo can be executed as follows.

(Object[])c.k("foo",A,B);

See “Example: A Remote Procedure Call” on page 55 for making remote procedures calls
from a C client.

Bulk Updates

Individual updates to databases are done with KSQL andup@ate statements. Bulk
updates are done with the KS@isert function, which can be executed with the follow-
ing KDBC remote procedure call.

("insert","table",bulk_data)

The insert function takes two arguments, the name of the tédibde() and the data to be
inserted ulk_datg. The bulk data is a rectangular arrangement of data with one item for
each column in the named table. The items must be in the same order as the table col-
umns, i.e. the order when the table was defined or, equivalently, the order in which they
appear as a result of a KS@klect from tablstatement. If the RPC is sent from a K or C,
the bulk data can be organized as a K dictionary whose entry names match the table col-
umn names, in which the column order of the data is not relevant.

Kdb Programmers Manual 29

Starting and Managing Kdb Servers

Managing Transaction Logs

If default logging is in effect on the Kdb server then the database is saved to disk (and the
log is reset to the empty log) be executing the following Ealestatemensave"(“The
transaction logging flag -I" on page 25). The corresponding remote procedure call is

("save","™)

A dedicated client can execute this RPC as a scheduled task with frequency depending on
the level of activity on the database.

Gateway Servers

A gateway server is a intermediate process that receives client requests as if it is the data-
base server and passes them along to an actual database server. There are many reasons
for using a gateway server. For example, a gateway server can require that all requests are
by way of remote procedure calls, so that all requests can be monitored and modified as
needed. (Even ad hoc queries can be submitted as arguments to stored procedures). A
gateway server can provide custom management of transaction logs or, as a Kdb server
itself, provide default logging for a shuffle or parallel database. Finally, to keep the list
short, a Kdb gateway server can employ a secure memory database for access and distri-
bution control for other servers, using its oagtessanduser tables for initial screening

(see “Managing User Access” on page 17).

See “Inter-process Communication” on page 37 for sending requests to Kdb servers from
a Kdb gateway server.

Kdb gateway servers provide customized control over Kdb database systems.

30 Kdb Programmers Manual

5 Kdb Topics

Estimating Performance in Memory Databases

The way to estimate Kdb query performance is as follows. Every KSQL query statement
can be broken down into a collectionbafsestatements, each of which uses one and only

one computation in the source statement. The performance of each base statement is esti
mated by timing its evaluation. These estimates are summed to produce a performance
estimate for the statement. The example in this sectioseleetstatement. but the meth-
odology applies to other queries as well, in particufatate - by statements (see the

KSQL Referencenanual).

An obvious question comes to mind: Why not simply time the source statements them-
selves? The answer is that base statementgearric For example, ifuantity>100

appears in one KSQL statement and its base statement is timed, then that number will be
the same for any other statement containing a relational function applied to an integer col-
umn. Consequently, timings for a comprehensive set of base statements can be collected
in order to estimate the performance of any source statement of interest.

An Example

The example is from thieade database defined by the Kdb sctipde.t that comes with

the Kdb download. Open that script in an editor and you will see (as of this writing) that
the integen, which defines the number of rows in the trade table, is set to 100,000. For
convenience, that value has been changed to 1 million here, even though the new value
may be too large for the evaluation version of Kdb. The following is the test statement.

select sum amount by stock.industry, date.month from trade

There are three computations in this statement, a two-dimensional aggreigatisiry,
month), a table join §tock.industry) and a field extraction from a date column
(date.month). As a result, there are three base statements isolating these computations.

select sum amount by stock, date from trade

select stock.industry from trade

select date.month from trade

Kdb Programmers Manual 31

Kdb Topics

Note that the first base statement is also an aggregation on two columns, but the columns
require no computations for their formation. The last two statements isolate the column
computations in thby phrase of the test statement.

KSQL statements can be timed by putting a colon to the left of the statement and evaluat-
ing it. The CPU time (in milliseconds) used in the evaluation is then displayed below the
statement. For example, time the first base statement as follows.

:select sum amount by stock, date from trade

The result is 640 milliseconds. (As in chapter “Design and Performance”, all timings were
done on the author’s desktop computer. The numbers given here are the result of doing six
independent evaluations, throwing out the smallest and largest and averaging the remain-
ing four.) The results for the second and third base statements are 120 and 260 millisec-
onds, respectively.

The estimated CPU time required for the test statement is the sum of the CPU times of its
base statements. In this case, it is 640+120+260 = 1020 milliseconds. (That the estimate is
almost exactly 1 second is purely coincidental). (A quick check on this number is

obtained by timing the test statement in the same way as the base statements, which gives
1010 milliseconds).

Note that execution time depends only on the computations in a statement, not on periph-
eral issues such as the number of columns in the reference table (i.e., the table named in
thefrom phrase).

Base Statements are Generic

These three base statements in the above example provide further support for the idea that
base statements are generic. That is, 640 milliseconds applies to any other statement with
an aggregation on two columns, 120 milliseconds to any table join (dot notation evalua-
tion) based on a varchar column and 260 milliseconds to any date field extraction.

Other Base Statements

Timings of other base statements using the 1 milliontrade table are as follows: 110
milliseconds for aggregations on one column, 50 milliseconds for arithmetic functions,
relational functions, logical functions and string (varchar) match, and 60 milliseconds for
aselect- where selection in which relatively few rows are chosen and 50 milliseconds +

32 Kdb Programmers Manual

Estimating Performance in Memory Databases

110 milliseconds per column (220 milliseconds for floating-point columns) where most
rows are chosen.

Search Phrases

Searches require special attention. KSQL searches are table selections defiheceby
phrases that are simpegualsexpressions, as in

select from trade where stock="aaa’
and table indexing expressions, as in
stock['aaa’].industry

Search evaluations are optimized when the reference table is sorted in ascending order of
the search column, as in

'stock’ asc 'trade’
Once this sorting is done, the search takes only one or two milliseconds, no matter how
many rows there are in the reference table.
where Phrases

A where phrase that uses the punctuation symbol “,” in pla@ndfis executed differ-
ently than the phrase witind. For example, if thevhere phrase is

(stock="aaa")and date>date'06/01/98'

then the search expressistiock="aaa'takes 50 milliseconds, the relational expression
takes 50 milliseconds and the logieald expression takes another 50. Add to those the
60 milliseconds for a selection in which only a few rows are chosen, and the estimate is
220 milliseconds per million rows for a selection based onithere phrase.

Note that this number does not change whetrtite table is sorted bgtock because the
same evaluations must be done.

Now consider thevhere phrase
stock="aaa’, date>date'06/01/98'

which is a cascadinghere phrase. First the selection basedstotk="aaa’is executed,
and then, on that result, the selection basedbte>date’06/01/98is done. If tharade

Kdb Programmers Manual 33

Kdb Topics

table is sorted bgtock then the (optimized) selection basedstotk="aaa‘takes only 1 or

2 milliseconds. The result of this selection has about 150,000 rows, to which the selection
based ordate>date'06/01/98s applied. The computational effort is somewhat less than
selecting relatively few rows from a million, giving a total cost estimate of 60 millisec-
onds.

The Performance Unit MRPS

A performance measurement unit that combines execution time with what is actually com-
puted is million-rows-per-second, or MRPS. The rows refer to the reference table of the
KSQL statement.

CPU milliseconds can be converted to MRPS by the KSQL expression
N/(1000*MS)

where N is the number of rows in the reference table and MS is milliseconds. In the above
example, N is 1000000 and the MRPS values for the three base expressions are (approxi-
mately) 1.6, 8.3 and 3.8. The estimated MRPS value for the test statement is then given by

1/sum 1/(1.6, 8.3, 3.8)

which is approximately 0.99 (a purely coincidental closeness to 1). The result is an esti-
mated 1 million rows per second for the test statement.

SQL Performance

Kdb ANSI-SQL is translated to KSQL for evaluation and consequently has comparable
performance.

Estimating Temporary Storage Requirements

The methodology for estimating performance can be adapted to temporary storage
requirements, that is, the virtual memory needed to create and hold temporary results that
exist during statement execution. Since virtual memory is not unlimited and memory
databases also occupy virtual memory, temporary space requirements could be significant
for tables with very long columns.

34 Kdb Programmers Manual

K Language Essentials

In the base statements of the above example,dtothk.industryanddate.monthare tem-

porary integer arrays with 1 million items each. Both are temporary results that must be
available for théoy phrase. In addition, tHey phrase requires a temporary integer array

for its result and, presumably, another for internal computational use. This means that
four integer arrays with 1 million items each are required duringythmarase evaluation.

When theby phrase evaluation is complete only the result must be maintained, leaving
one temporary integer array of 1 million items. The aggregation result, in the very worst
case, occupies another integer array with 1 million items. Consequently, at most four tem-
porary integer arrays are required at any one time, which is 16 megabytes of storage per
million rows.

A where phrase in @electstatement may reduce temporary storage requirements. For
example, consider the cascadimigere phrase from above.

stock='aaa', date>date'06/01/98"

Executingstock="aaa'requires at most a 1 million row integer array for its result. How-
ever, all other temporary storage requirements are now reduced by more than 80% in this
example. The total temporary storage requirement is now less than 8 megabytes per mil-
lion rows.

Estimating Real Memory Requirements

Having enough real memory to avoid page swapping during statement execution is a sig-
nificant performance issue. In order to run at optimal speed, every computation must fit in
real memory. In particular, the arguments and result of every function execution must all
fit in memory. The real memory requirement to evaluate a statement is the same as the
temporary virtual memory requirement; the temporary virtual memory simply overlays the
real memory.

K Language Essentials

Data Types

K has the same basic data types as Kdb, integer, floating-point, symbol (varchar) and char-
acter (varbinary). K vectors do not require surrounding parentheses and comma-separa-
tors between items; spaces are used for separating numeric items. For example,

x:13435

Kdb Programmers Manual 35

Kdb Topics

defines an integer vector with four items,
y:13.45.5

defines a floating-point vector with three items, and
z:'abc 'xz.s34 ""s*4/5"

defines a symbol vector with three items (the spaces between items are for readability
only). Symbols in K are denoted differently than KSQL varchar items. A symbol is writ-
ten with a leading backquote followed by its contents which, in general, must be sur-
rounded by double-quotes. For exampls*4/5" . The double-quotes are not part of
the data. Symbols that represent valid K names do not need double-quotes, as in
'xz.s34 andabc .

Finally, a character vector is written the same as a KSQL varbinary, as in
w:"1224 w 34th, New York"

Theitemsof vectors are calledtoms which are valid data objects. Vectors are special
forms of lists whose items are all atoms of the same data type. In general, the items of lists
can be atoms of mixed types or other lists or any type of K data object, including func-
tions. The items of a general list are separated by semi-colons in K, as in

(123;(ahb;4.127)

which is a two-item list whose first item is the integer vett@r3 and whose second item
is also a two-item list, consisting of the symbol vectob and the floating-point atom
4.127 .

Note that the results of expressions executed in a Kdb session are displayed in K data for-
mat, not Kdb format.

The K Tree

All data in an active K environment is organized hierarchically in a tree. Every node of
the tree is a data object callediationary. Because of similarities with file systems, dic-
tionaries are also called directories. A dictionary that plays a special role is often called a
context For example, any dictionary can be madeatttere contextwhich means that
references to data within that node can be made relative to it and do not need full path
specifications.

36 Kdb Programmers Manual

K Language Essentials

The top level dictionary is denoted simply by do}. (There are several dictionaries

within dot that appear by default when a K or Kdb session is started. For example, the
.k dictionary is the default active context. In a Kdb session, this dictionary holds the
active database. Kdb tables are K dictionaries. A Kdb table ¢edidel can be refer-

enced in K byk.trade or.k[trade]

Attributes

Every data object on the K tree has an associated dictionary caliédliste dictionary

Some attributes have default meanings; all others can be application specific. For exam-
ple, the attribute namedis the defaultrigger attribute. If defined, the value is a charac-

ter vector holding a K expression that is automatically executed whenever the value of the
owner changes. For example, the attribute dictionary of a K diijects denoted by

abc. (i.e.,abc-dot with no spaces) while reference to a specific attribute requires two
dots, as irabc..t for the trigger orabc . The objectabc is theownerof its attribute
dictionary. See “Column Attributes” on page 19 for the default attributes of Kdb tables.

A dictionary is displayed as a series of triples, one for each item consisting of the item
name as a symbol, its value and its attribute dictionary).

Inter-process Communication

A client can send a synchronous or an asynchronous message to a gateway or Kdb server.
Synchronous messages are cafjetinessages and asynchronous messages aressilled
messages. The client sends a synchronous message when a result is expected and an asy
chronous message otherwise. In effect, a synchronous message corresponds to executing
a function on the server and waiting for the result. For example, a client should send a
KSQL selectstatement synchronously because a result is expected. Asynchronous mes-
sages are appropriate when no response is expected.

Connecting

The monadic primitive function denoted By is used to connect to a gateway or Kdb
server. The argument to this function is apigtf connection parameters that is described
in the chapter “Starting and Managing Kdb Servers”. The result of the function is called a
handle which is used whenever messages are sent to that server. For example,

h:3:p

defines the handle. The connection is successful if no error is reported.

Kdb Programmers Manual 37

Kdb Topics

Sending and Receiving

The dyadic primitive function3: and4: send asynchronous and synchronous messages,
respectively. The left argument of either one is the handle for the connection and the right
argument is the message. The message can be any K object that is meaningful to the
recipient. In the following example, the K objecholds the result of selectstatement

sent to a Kdb server.

r: h 4: "select avg price by stock from trade"

The resulr is a triple containing a list of column names as symbols, a list of values and a
list of column data types as symbols. A stored procespuien the server with arguments
A, B andC can be evaluated as follows.

s: h 4: (‘sp;(A;B;C))

An asynchronous message can only be sent by K clients.

Closing a Connection

If his a handle created by monadic 3: (see “Connecting”, above), then
3:h

closes the connection.

File Management

Any K object that does not contain function definitions can be saved to disk and loaded
(i.e., mapped) from disk. The expression to save the abptgbath locatiomp is

p 1.0

The expression to map the K object on disk into the K workspace as the Kaoigject
o:l:p

The path location variableis a character vector, as in

p:"c:/k/data/item2"

38 Kdb Programmers Manual

K Language Essentials

Slashes can always be used in path specifications, even when back-slashes must be used
outside K. In that case you can also use back-slashes in K, but you must always use dou-
ble back-slashes, as'ia\\k\\data\\item2"

A K objecto can be appended to an existing K object stored on diskewitor example,
if the character vectqr defines the path to a K list withitems is stored on disk, andaif
is a K list withm items, then

p5:0

append® to the stored list to create a stored lishefm items.

Functions

A K function definition is a series of K statements surrounded by braces. Statements on
the same line are separated by semi-colons. Statements on successive lines are separate
by a new-line. The result of the function is — in the default case — the result of the last
statement in the definition, i.e. the statement immediately followed by the right brace that
marks the end of the definition.

This examples in this manual are one-statement functions, which in K are sufficient to
define complex computations. The update function in “The tpcb Example”, below, which
can be found in the referenced Kdb script on the kx website, has several lines. _See the K
Reference Manuain the kx website for the definitions of the K primitives used in that
function.

The function{+/x} sums the items of its argumer&nd{x+y} sums its argumentsandy,
item-by-item if either argument is a list. The naxrie the default argument of a monadic
function (i.e., one argument), whiteandy are the default argument names of a dyadic
function. Other names can also be used, f§aaj +/aa} and{[al;ar] al+ar} . Functions
are given names with ordinary assignment, asyg{+/x} andsum:{x+y}. A monadic
function can be evaluated bgg[a] for a numeric lish, or simpleagg a Evaluation of a
dyadic function is of the forraum[a;b].

K and Kdb

K functions can be defined in K scripts (file extension and loaded into Kdb by loading

K scripts within Kdb scripts. They can also be defined in Kdb scripts by preceding K def-
initions with the back-slastscapecharacter. The following example illustrates the use of
back-slash for indicating K definitions in Kdb scripts.

Kdb Programmers Manual 39

Kdb Topics

The tpcb Example

The script_http:www.kx.com/a/kdb/examples/tpdlom the kx website is used in “Trans-
action Processing” on page 12 to illustrate the effect of grouping transactions in batches.
Various timings are given there for various batch sizes. In this section we will see how
those timings are done.

First of all, download the script tpcb.t. This script is loaded into a timing script (say
time.t) with the Kdb load statement

load'tpcb.t'

(see the KSQL Refereneceanual). The update function defined in the script is the K
function namedip. It takes four integer vector arguments called account id, teller id,
branch id and the amount by which the corresponding quantities are increased (positive
amount) or decreased (negative amount). Fifty thousand random transactions can be
defined by the following KSQL statements:

ai:50000 rand account.id
ti:-50000 rand teller.id
bi:50000 rand branch.id
x:50000 rand 100.0

Then
:up[ai, ti, bi, x]
gives the CPU time for fifty thousand transactions done in one batch.

We can simulate five thousand batches of ten transactions each as followsreshapée
function is denoted b#. The K expression

\Al:5000 10#ai

reshapes the items & into a listAl with 5000 items, each of which is an integer vector
with 10 items. The leading back-slash iseanape charactehat is required in a KSQL

or SQL script to indicate that what follows is a K expression. Do the same thing for the
other vectors.

\TI:5000 10#ti
\BI:5000 10#bi

40 Kdb Programmers Manual

http://www.kx.com/a/kdb/examples/tpcb.t

K Language Essentials

\X:5000 10#x

Each set of corresponding items in the new listsAsRly, TI[i] , BI[i] andX[i] for an
indexi, represents a batch of ten transactions and

up[Al[i], TI[i], BI[i], X[i]]

evaluates thigh batch of ten transactions. All five thousand batches can be evaluated (and
timed) in a single KSQL statement as follows.

:up Each[Al, TI, BI, X]

That is,Eachis an operator that appliep to every set of corresponding itemsAh TI,
Bl andX, that is, to every transaction batch. Use 10000 5 to reshape for five transactions
per batch and 50000 1 for one transaction per batch.

Each Operators

The Keachoperator is denoted by single-quote. The K expression corresponding to the
above KSQLEach expression is

\\t up'[Al; TI; BI; X]

The leading back-slash indicates that this is a K expression (assuming we're still in a
KSQL or SQL script). Itis followed by , the K command to time the expression to its
right (replacing the leading colon in the KSQL expression). The expression to the right is
up'[Al; TI; BI; X] , Which is the equivalent to the KSQL statement

up Each[Al, TI, BI, X]

There are variations of each calkgch-leftandeach-right they are denoted and/: |,
respectively, in K and naméthchleft andEachright in KSQL. For example, connection
handles are integers (see “Connecting”, abovell iff a vector of connection handles to
more than server, the following K expression sends the messtagevery server whose
connection is irH.

H4\:m

Kdb Programmers Manual 41

6 Database Topics

Multi-Threading

There are two ways for a database product to execute multiple requests simultaneously:
multiple threads and multiple servers. Threads are so-called light-weight processes that
require less system resources than ordinary processes. A database server that simulta-
neously executes simultaneous multiple requests uses multiple threads. The server itself is
an ordinary process; multiple servers executing simultaneous requests means multiple pro-
cesses, not multiple threads.

Assuming that everything is running on one computer, neither multiple threads nor multi-
ple servers have much effect on through-put unless there are multiple CPU units. When
there are multiple CPUs, many database products (including Kdb) recommend multiple
servers (one per CPU) where, for applications doing updates or inserts, all changes to any
particular table are routed through one server to avoid costly synchronization of simulta-
neous modifications.

Kdb servers do not employ multiple threads. The reason is that a high through-put rate o a
single CPU, together with the multiple server alternative for multiple CPUs, place multi-
ple threads at a low priority. That is, Kdb installations strive to make the servers CPU-
bound (hence the high through-put rate), in which case multiple threads on a single CPU
have a negligible effect on through-put. The example below illustrates this point.

This is not to say that multiple threads could never be useful in Kdb servers and that Kdb
servers will never be multi-threaded. Since active Kdb databases consist of mapped files
and multiple threads can share mapped files, there are situations where multiple threads

could provide an easy and effective way to exploit multiple CPUs with a single server.

Example

This example consists of two simultaneous requests of a single database server running on
a host computer with one CPU. Suppose the two requests would use, respcivel,

CPU seconds if executed independently. On a single-threaded server the two requests take
X+Y total CPU seconds and one goes first while the other waits. Thus “elapsed time”
looks likeX orY seconds for the one that goes first ZrtY seconds for the one that waits.

Kdb Programmers Manual 43

Database Topics

On a multi-threaded server they also tXk& total CPU seconds, but they run at the same
time. Assuming that they equally share the CPU while both are running, elapsed time
looks like2*min(X,Y)for one request amdax(X,Y)+min(X,Yjor the other. In particular,

if X equalsy the elapsed time of both request&4X with multiple threads, while in the
single-thread case only the one executed last has elapsetrXntbhe one executed first
has elapsed tim&. On the other hand, ¥ is much greater tharithe elapsed time of the
shorter-running request is oYY seconds with multiple threads, but if the longer-run-
ning request goes first in the single-thread case, it is the much gfeatseconds. One
can generally conclude that elapsed time is more uniformly correlated to resource con-
sumption when multiple threads are used. However, when requests are executed fast
enough then other factors dominate total elapsed time (for example, network transport
time), the different effects between single-threadedness and multi-threadedness become
negligible.

44 Kdb Programmers Manual

7 The C - K Interface

Introduction

This chapter defines the API for calling C functions from K and K functions from C. The

C functions that make up the API are listed in the table below, together with the sections in
which they are described. C functions called from K must manage K arguments and pro-
duce K results. C programs that call K functions must create K arguments and manage K
results. The API functions for managing K data are listed in the first 5 rows of the table.
The next-to-last row lists API functions for calling K functions and accessing K data from
C. The mechanism for calling C functions from K is part of the K language and therefore
does not appear in this table; see “Linking to C Functions in K”.

K <-> C Interface Functions

C Function Section Reference

gi ,of ,gc,gs,gn,sp Creating K Atoms, Data Types

gtn , gnk, gp, gpn, gsk Creating K Lists

Ki, Kf, Kc, Ks Accessing and Modifying K Atoms

Kl , KF, KC KS, KK, kap Accessing and Modifying K Lists

dj ,jd Date Conversion

kerr Signalling a K Error

sdf , scd Registering K Event Loop Callbacks

ksk , sfn Calling K From C

cd, ci Managing Reference Counts
Compilation

C functions that will be called from a K program must be defined as entry points in an NT
DLL (file extension.dll) or a Linux SO (file extensiorso).

Kdb Programmers Manual 45

The C - K Interface

Header and Lib files

These files can be found at www.kx.com/a/k/connddiey aré20.lib , K20.h and
K20x.h . IncludeK20x.h in your C files and usk20.lib for linking. There are brief
comments irkK20.h andK20x.h summarizing the contents of this document.

The C Structure of the K Data Object

The internal format of K data objects is definedkR0.h by the recursive C-structure
namedK. The members of the K structure are

¢ — reference count of the object
t —the data type of the object
n — the number of data items when the object is a list or dictionary

The structure members are primarily for reference. However, there are occasions when
you must manage the reference count (see “Managing Reference Counts”).

Data Types

The data types of K objects are represented by integer values, as follows.
6 — atomic nil
5 —dictionary
4 — symbol atom, i.esp (null-terminated character stririg)
3 — character atom (unsigned)
2 —double atom
1 —integer atom

0 —general list whose items are other K objects

-1 —integer list (vector)

-2 —double list (vector)

-3 — character list (vector)

-4 — symbol list (vector), i.e. each itemsis (null-terminated character strirlg)

1. The API functiorsp internalizes its character string argument in K for optimized searches, but does not
create a K object.

46 Kdb Programmers Manual

http://www.kx.com/a/k/connect/

Creating K Atoms

Creating K Atoms

There are atomic constructors for each type of K atom. They are
gi — generate an integer atom, agif3) orgi(i) forint i ;
gf — generate a floating-point atom, agf(3.5) orgf(a) fordouble a;
gc — generate a character atom, agdfic') orgc(a) forunsigned char a;

gs — generate a symbol atom, agse{sp("price")) orgs(sp(s)) for
char *s ;

gn — generate the nil atom, asgn() .

Creating K Lists

There are several list constructors. The most genegtl(iype,count) . For exam-
ple,gtn(-1,5) creates an integer vector of length 5. Valid types are 0, -1, -2, -3, -4.
Valid counts are non-negative integers.

The constructognk creates a list from its arguments. It is useful for small lists, particu-
larly for building argument lists to K functions called from C. The first argumegnko

is the number of arguments that follow, which can be from zero to eight. It is also the
length of the result list. The remaining arguments are the items of the result, in order. For
example,

gnk(5,gi(2),0f(3.4),gc('a’),gs(sp("abc")),gn());

is a list of 5 items. An argument other than first can be any K object.

Creating Character Vectors

A K character vector can be created from a null-terminated string using the constructor
gp, as in

gp(“abcd”);

The constructogpn is used to select a specific number of characters from the front of a C
character vector or string, as in

gpn(cv,10);

The result is a K character vector of length 10.

Kdb Programmers Manual 47

The C - K Interface

Creating Dictionaries

A K dictionary is a list of type 5 consisting of symbol-value pairs. A dictionary can be
created with the API functiogtn for creating listsgtn(5,n) is a dictionary witm
entries.

The API functiongsk is a useful tool for creating symbol-value pairs. For example,
gsk("abc",gf(2.71));

The access function for general lists, KK, can be used to access and replace dictionary
items, just as if the dictionary is a list of type 0. See “The Access Function for a General
List". The API function for appending to a general listp , can be used to append a
symbol-value pair to a dictionary. See “Appending to a K List”.

Accessing and Modifying K Atoms

If x is an integer atom thdfi(x) is a Cint .

If x is a floating-point atom thekf(x) is a Cdouble .
If x is a character atom th&t(x) is a Cunsigned char
If X is a string atom (symbol) th&s(x) is a Cchar* .

The value of an atom can also be modified, as in
Ki(x)=2;

and
Ks(x)=sp("abc");

Accessing and Modifying K Lists

If x is an integer vector then théh itemKI(x)][i] is a Cint .

If x is a floating-point vector then thah itemKF(x)][i] is a Cdouble .
If X is a character vector then thih itemKC(X)[i] is a Cunsigned char
If X is a string (symbol) vector theh itemKS(x)][i] is a Cchar* .

A list item can also be modified, as in
KF(X)[2]=3.5;

48 Kdb Programmers Manual

Calling K from C

The Access Function for a General List

The access function for a general list is denoteldKy It applies to K objects of type 0.
Thei th item of a K objecx of type 0 KK(X)[i] , is also a K object. If, for example,
that item is an integer vector, then its items can be acces$a¢ka¢(x)[i])[j]

Appending to a K List

The API function for appending to a K listdap . Use this function if the length of the
result is not known when the list is created. Start with an empty list, as in

x=gtn(-1,0);

which is an empty integer vector. Whenever a new item to be appended is available,
append it toc with kap . For example, append the value ofi€ a tox as follows.

kap(&x,&a);

If y is a general list (type 0) then the second argumekgofcan be a pointer to any other
K object; that K object becomes a new itenyokap is item-to-list append, not list-to-
list.

Calling K from C

K can be started from a C program, K scripts can be loaded and K expressions can be exe-
cuted with results returned to C. The API function that does all thkis

First of all, K must be initialized witksk(",0) . Note: this function always returns a
result. If the result is meaningless it can be immediately freed using the API fustttion
see “Managing Reference Counts”. You will often see C statements, like the following,
that callksk and immediately free the result with .

cd(ksk(",0));
The character string argument can hold any valid K expression or command. For exam-
ple,

r=ksk("2+3",0);
or

cd(ksk("\I script.k",0));

Kdb Programmers Manual 49

The C - K Interface

The character string can contain a K function definition or the name of an existing K func-
tion, in which case the second argument must be K list of the function arguments. For
example,

ksk("{x+y}",gnk(2,gi(2),9i(3)));

C calling K calling C

It is conceivable that an application has a C main program that calls K functions that, in
turn, call C functions. In this case it is not necessary to compile a separate library that is
linked into K. The functions to be called from K can be compiled with the main program
and registered as callbacks with K from the main program.

For example, suppose the C function is
KA(K x,K y{Ki(x)+Ki(y):}

f can be registered in K using the API functi&n , as follows.
sfn("g",f,2);

whereg is the name by which is called from K and 2 is the number of arguments.of
The K function can now be called wikisk .

ksk('g[2:3]",0);
or

ksk("g",gnk(2,9i(2).9i(3)));

Linking to C Functions in K

The primitive dyadic K functio2: defines links to C functions. A result®f is a K

function that, when called, calls the C function to which it is linked. The left argument to
2: names the DLL or SO file (with path) in which the C function is found. The right argu-
ment is a pair; its first item is a character atom or vector holding the name of the C func-
tion and its second argument is the number of arguments in the C function.

For example, the C function

K f(Kx,Ky{....}

50 Kdb Programmers Manual

Signalling a K Error

is linked into K with
g:obj 2: ("f*; 2)
The K program that calls is named.

It is up to the programmer to make sure that the arguments to the K function exactly match
the arguments of the C function.

Signalling a K Error

A K error can be signalled by a C function called from K with API fundtiem . For
example,

if(0>=x->t)return kerr("x must be an atom");

The effect, which is to signal an error in K with the message “x must be an atom”, is the
same as if the error was signalled by a K function. Note that it may be necessary to clean
up work in progress just before an error is signalled; see “Managing Reference Counts”.

Managing Reference Counts

Reference counting is a standard technique in data management to avoid making unneces:
sary copies of data. When writing C programs that create K objects, there are circum-
stances when you must manage the reference counts of those objects.

Every K object has reference count 1 when itis created. If a K atom or vector is created in
C function that is called from K and returned as that function’s result, it will be managed

by K from the point of return onwards. However, if temporary K atoms and vectors that
are not part of the result have been constructed, or if a K atom or vector result is under
construction when an error is signalled, then the reference counts of those objects must be
decremented before the function returns. Their reference counts then decrease by 1 to 0,
indicating that the storage allocated to these objects can be freed.

Similarly, when a K function is called from a C program its result is returned to the C pro-
gram. The reference count of this result should be decremented when it is no longer in
use.

Reference counts are decremented by the API functiofior examplecd(x) decre-
ments the reference count of the K object

Kdb Programmers Manual 51

The C - K Interface

Knowing when to decrement reference counts is analogous to knowing when to free tem-
porary storage allocated withalloc() , but trickier becaused is recursive. For exam-

ple, every item in a general K list (type 0) is also a K object with its own reference count.
If a K objectx is created and then inserted in the general K Jiand if the reference

count ofy is subsequently decremented, the reference countvif be decremented
automatically and therefore should not also be decremented explicitly.

Reference counts can also incremented, with the API funatiofypically, the reference

count of a K object must be incremented once for every independent use after the first use.
(An independent usis one that may cause the object’s reference count to be decremented

once in the future.) For example, if a K atom or vector is created and then inserted twice

into a general k list, its reference count must be explicitly incremented once.

For convenience, the functi@n returns its reference-count-incremented argument as its
result. For example, suppose that the K objastthe result of a C function called from K
andr is not created in that function. The reference counta#n be incremented in the
return statement, as follows.

return ci(r);

It is best to avoid complicated reference count situations and leave memory management
to K by moving K objects to the K side of the interface and referencing them there. For
example, the K objedtonddata can be moved to a global variable in thedirectory

of K with the same name by

t=gnk(1,bonddata), r=ksk("{.u.bonddata::x}",t), cd(t)

The K objectu.bonddata can now be used in any K function, in particular, ones
called from C.

Date Conversion

Bothjd anddj take a dnt argument and return ani@ result. The argument {d

is an integer of the foryyymmdd and the result is a Julian day count. The argument to
dj is a day count and the result igygymmdd integer. These functions are useful for
date arithmetic. For example, to add 5 days to a date, first convert to Julian dggs,with
add 5 to the result and convert back vdih

52 Kdb Programmers Manual

Registering K Event Loop Callbacks

Registering K Event Loop Callbacks

It is possible to send and receive non-K IPC messages in a K application by managing the
non-K connection in C functions and registering the socket callbacks in the K event loop
with the API functionsdf . This function takes two arguments, the socket id (for an
acceptcallback) and the callback function, as in

sdf(sockid,fn);

Use the negative of the socket id to establistad callback, as in
sdf(-sockid,gn);

The callback functionfn andgn both take one argument, which is the socket id. Close
the socket with the API functicstd , e.g.scd(sockid)

Example: Summing Two K objects

The following C function illustrates straightforward manipulation of K objects by sum-
ming two K integer objects, both of which are either an atom or vector. The function
header is for a DLL. The best way to sum two K objects is, of course, using K, as in

a = gtn(2,x,y); s = ksk("+",a); cd(a);

__declspec(dllexport) K my_sum(K x,K y)
{ Kz

inti;

I/l case: both x and y are atoms

if(1==x->t&&1==y->t) return gi(Ki(x)+Ki(y));

/] case: x is an atom and y is a vector

if(1==X->1&&-1==y->t){
K z=gtn(-1,y->n); // z is the same length as y
for(i=0;i<y->n;i++)KI(2)[iI]=Ki(x)+KI(Y)]i];
return z;

}

/I other cases: vector x, atom y and vectors X, y

}

It is left to the reader to complete this example.

Kdb Programmers Manual 53

The C - K Interface

Example: Accessing a Kdb Server with KDBC

The following example can be found. in www.kx.com/a/kdb/connect/kdbdttittustrates
communication between a C program and a Kdb database server. The Kdb server, listen-
ing on port 2001, is started with the following command, which also creates the database
from the SQL scripsp.s (in the Kdb download from the kx website).

k db sp.s -p 2001

The C program connects to the database server, sends it an SQL query and processes the
result. Note that the K result returned by the Kdb server is a 3-item general list holding the
column names of the result table, the data in column order and the data types.

#include "k20x.h"
extern printf(S s,...),gets(S);
main()
{ Kagq,r,n,dt; // query,result,names,data,types
cd(ksk("h:3:(";2001)",0)); // connect
cd(ksk("k:{h 4:x}",0)); // a remote exec function
g=gp("select sum gty by p from sp"); // KSQL query
r=ksk("k",q),cd(q); // result, free query
n=KK(r)[0],d=KK(n[1],
t=KK(n[2]; // names, inverted data, types
printf("columns: %d\n",n->n); // number of columns
{l i=0;for(;i<n->n;++i)
printf("%s %s\n",KS(n)[il, KSY)[i]);} // name&type
printf("rows: %d\n",KK(d)[0]->n); // number of rows
printf("%s %d\n",KS(KK(d)[0])[0],
KI(KK(d)[1D[OD; // first row(int,varchar)
cd(r); // free result
cd(ksk("3:h",0)); // close connection
{C b[1];printf("\ndone ... ");gets(b);} // prompt
return 0;}

54 Kdb Programmers Manual

http://www.kx.com/a/kdb/connect/kdbc.txt

Example: Evaluating KSQL Statements

Example: Evaluating KSQL Statements

KSQL stored procedures written in C use the Kdb entry pointo evaluate KSQL state-
ments (see “Custom Analytics and Stored Procedures” on page 20). For example, the fol-
lowing C character string holds a KS@pdate statement.
char s[]="update qty:2*qty from 'Orderltems’ where \
orderid=6099"

This constant is placed in a K character vector as follows.
Kv;
v=gtn(-3,(strlen(s));
memcpy(KC(v), s, strlen(s));

The function.d.r is then called as follows.
K a;
a=gtn(1,t);
cd(ksk(".d.r",a));
cd(a);

The result oksk is immediately freed witikd because thigpdate statement does not
produce a needed result. Freeing the K argumera &itgo frees the character vector

Example: A Remote Procedure Call

The KDBC message format for a bulk update is
("insert","table",bulk_data)

(see “Bulk Updates” on page 29). In this case the remote procediuseris The corre-
sponding K message has a slightly different arrangement. First, the arguments to the
remote procedure, which in this examplenisert, must be grouped. Alsmsert requires
that its table name be a symbol, and therefiafgle” must be replaced with a symbol.
Assuming the bulk data has already been constructed as the Klabjebeinsert mes-
sage can be constructed as follows.

msg = gnk(2,gp("insert"),gnk(2,gs(sp("table")),bd))

Kdb Programmers Manual 55

The C - K Interface

The message can be sent to the Kdb server using the K fukat&fimed in “Example:
Accessing a Kdb Server with KDBC” on page 54).

cd(ksk("k",msQ));

The reference count of thak result is decremented immediately because it will not be
used. The reference count of the message should also be decremented.

cd(msg);

56 Kdb Programmers Manual

	Kdb Programmers Manual
	Contents
	1 Introduction�1
	2 Design and Performance�7
	3 Creating and Managing Kdb Databases�15
	4 Starting and Managing Kdb Servers�23
	5 Kdb Topics�31
	6 Database Topics�43
	7 The C - K Interface�45

	1�� Introduction
	RDBMS
	High Performance
	Analytic Server
	Kdb Architecture
	Kdb Flexibility
	Other Kdb Information
	Evaluation Kdb
	Production Kdb
	Who Should Read this Manual

	2�� Design and Performance
	Memory Architecture
	Shuffle Architecture
	Parallel Architecture
	Distributed Queries
	Performance of Parallel Databases

	Transaction Processing
	The K Programming Language

	3�� Creating and Managing Kdb Databases
	Database Organization on Disk
	Creating Databases
	Enumeration

	Managing User Access
	The user Table
	The access Table

	Customizing Kdb Databases
	Column Attributes
	Custom Analytics and Stored Procedures

	4�� Starting and Managing Kdb Servers
	The Kdb Startup Command
	The ODBC flag -dsn
	The data source name f
	The Web server port -P[n]
	The TCP/IP port -p[n]
	The transaction logging flag -l
	Rollbacks

	Replication server location -r[h]p
	Starting a Shuffle Database

	Connecting to a Kdb Server
	TABLE 4.1�� Data Types
	JDBC
	ODBC
	KDBC
	Remote Procedure Calls
	Bulk Updates
	Managing Transaction Logs

	Gateway Servers

	5�� Kdb Topics
	Estimating Performance in Memory Databases
	An Example
	Base Statements are Generic
	Other Base Statements
	Search Phrases
	where Phrases

	The Performance Unit MRPS
	SQL Performance
	Estimating Temporary Storage Requirements
	Estimating Real Memory Requirements

	K Language Essentials
	Data Types
	The K Tree
	Attributes

	Inter-process Communication
	Connecting
	Sending and Receiving
	Closing a Connection

	File Management
	Functions
	K and Kdb
	The tpcb Example
	Each Operators

	6�� Database Topics
	Multi-Threading
	Example

	7�� The C - K Interface
	Introduction
	K <-> C Interface Functions

	Compilation
	Header and Lib files

	The C Structure of the K Data Object
	Data Types
	Creating K Atoms
	Creating K Lists
	Creating Character Vectors
	Creating Dictionaries

	Accessing and Modifying K Atoms
	Accessing and Modifying K Lists
	The Access Function for a General List
	Appending to a K List

	Calling K from C
	C calling K calling C

	Linking to C Functions in K
	Signalling a K Error
	Managing Reference Counts
	Date Conversion
	Registering K Event Loop Callbacks
	Example: Summing Two K objects
	Example: Accessing a Kdb Server with KDBC
	Example: Evaluating KSQL Statements
	Example: A Remote Procedure Call

